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List of symbols

r =z, ¢ =2% coordinates parametrizing the shell midsurface M in
circumferential and axial directions, respectively; at the same
time z = 2! and ¢ = 22 are points in Q = (0,L;) € E* and
Z = (0,Ly) € E', respectively, where L = L;, L, are the
length dimensions of M along x-coordinate and &-coordinate,
respectively; it means that (Q x Z) € E? is referred as a region
of the shell midsurface parameters z!, 22;

a, indices taking values 1,2 and related to midsurface parameters ',

z%, summation convention holds;

a,b non-tensorial indices, run over {1,2,...,n}, summation
convention holds;

A B non-tensorial indices, run over {1,2,...,N}, summation
convention holds;

(0B covariant midsurface first metric tensor, for orthonormal
parametrization introduced on M tensors a,s = a®? are the unit
tensors;

bas covariant midsurface second metric tensor, for orthonormal
parametrization introduced on M by = by = by = 0 and
b1 = —r~ !, where 7 is a midsurface curvature radius;

Oo = 0/0x* partial differentiation with respect to 2%, 0,5 = On - .. Os;

A=[-N2,)\/2] basic cell in Q € E', where A = ), is a cell length

dimension in z = z!-direction;

A(x) =z + A =[-\/2,A/2] an arbitrary cell with a centre at point = € Qa,

Qa={zr € Q: A(x) C Q}, Qa is a set of all the

cell centres which are inside 2;

A diameter of a closed subset A = [—A1/2,A\1/2] X ... X [=An/2, A /2] of E™,
called the microstructure length parameter; if m = 1 then A = [-\/2, \/2]
and A = )\ is a cell length dimension in x = z'-direction;

A, = (—e)\/2,e\/2) scaled cell in Q € B, e € (0,1];
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d(z) the shell thickness, = € ;

r midsurface curvature radius;

t time coordinate, t € I = [to, t1];

uo(r,&,t)  displacements along 2%, (x = 21, = 2%,t) e A x Ex [;

w(z,&,t) displacement in the direction normal to the shell midsurface M,
(r,6,t) e QA x ZEx1;

D*#¥(x)  membrane stiffness tensor, z € Q;

B*%(x)  bending stiffness tensor, r € Q;

p(x) mass density per midsurface unit area, x € €2;

fz, &, t)  external forces along 2%, (r =2',=2%1) € A x E X T;

f(x,&,t)  external forces in the direction normal to the shell midsurface M,
(x,&,t) € A x = x T,

A(uq,w)  action functional;

L(") Lagrange function for the considered problem;

) set of tolerance parameters, § = (\, dg, 1, ..., 0r), where \ is related
to the distances between points in region Q € E™ and &y, O,
k= 1,2,..., R, are related to the differences between the values

of function F(-) defined in 2 € E™ and its gradient 9*F(-) in points
x,y belonging to 2 € E™ such that |x —y| < \; nonnegative integer
R is assumed to be specified in every problem under consideration;
in the present dissertation m = 1;

0(9) terms of the order of tolerance parameters 9;

(He)= <f> (-) averaging of function f in A(-), where f is a periodic
approximation of f in A(-);

TPE(Q,A) system of tolerance-periodic functions of the R-th kind defined on
Q) € E™, which are tolerance-periodic with respect to cell A and
tolerance parameters §; in the present dissertation m = 1 and R
is equal to either 0 or 1 or 2;

SVE(Q, A)  system of slowly-varying functions of the R-th kind defined on
Q € E™, which are slowly-varying with respect to cell A and
tolerance parameters J; in the present dissertation m = 1 and R
is equal to either 1 or 2;

FSE(Q,A) system of tolerance-periodic fluctuation shape functions of the R-th
kind defined on 2 € E™, which are tolerance-periodic with respect
to cell A and tolerance parameters J; in the present dissertation
m = 1 and R is equal to either 1 or 2;



ul (-, 6, t) € SV, A), w(-,&,t) € SVA(Q,A)  macrodisplacements

(averaged variables)
being unknowns of the
tolerance model equations,

(1) e ExT

Us(-,&,t) € SVEHQ, A), WA, €,t) € SVE(Q,A)  fluctuation amplitudes

being unknowns of the
tolerance model equations,

(&,t) e Ex 1,

he(-) € FSHQ, A), g*(-) € FS2(Q,A) fluctuation shape functions;

<th> (z)

Ahg(ug, Ug, U}O, WA)
U’g('ra 57 t)’ wo(l’7 5’ t)

Us(z,&,t), Wh(z,£,1)

Lo(")

an(x> 57 t)a wo(ilf, 57 t)

the tolerance averaging of lagrangian L in A(z),
x € Qnp;

tolerance averaging of action functional A(u,,w);
unknowns of the consistent asymptotic model,
which as in the tolerance modelling are called
macrodisplacements, but they are not referred to the
slowly-varying functions introduced in the tolerance
averaging, (z,£,t) € Q x = x I;

unknowns of the consistent asymptotic model, which
as in the tolerance modelling are called fluctuation
amplitudes, but they are not referred to the
slowly-varying functions introduced in the tolerance
averaging, (z,£,t) € Q x = x I;

averaged form of lagrangian wunder consistent
asymptotic averaging;

the known solutions to a certain initial-boundary
value problem for the consistent asymptotic
equations derived in the first step of the combined
asymptotic-tolerance modelling, (z,£,t) € Q x = x I;

QF(-,&,t) € SVIHQ,A), VE(- £, t) € SVE(Q,A) fluctuation amplitudes

being unknowns of the
tolerance model equations
derived in  the second
step of the combined
asymptotic-tolerance

modelling, (&,t) e = x1,
k=1,2,...,m,
K=12,..., M,



W_, Wy fundamental lower w_ and new additional cell-dependent higher
w free vibration frequencies derived from the tolerance model of
a functionally graded shell strip, cf. Subsection 6.2;

w free vibration frequency obtained from the asymptotic model of
a functionally graded shell strip, cf. Subsection 6.2;

Won—, Wmny fundamental lower W,,,- and new additional cell-dependent

higher W,,,,+ free vibration frequencies derived from the tolerance

model of a functionally graded open shell of finite all length

dimensions, cf. Subsection 6.3;

free vibration frequency obtained from the asymptotic model of a

functionally graded open shell of finite all length dimensions, cf.

Subsection 6.3;

cell-dependent higher free vibration frequencies in circumferential

and axial directions as well as in direction normal to the shell

midsurface, respectively, studied on the basis on superimposed

microscopic model equations derived in the second step of the

combined asymptotic-tolerance modelling (equations independent

of solutions obtained in the framework of asymptotic model

formulated in the first step of the combined modelling), cf.

Subsection 7.2;

c new wave propagation speed depending on .

~AM
mn

€l
&
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1. Introduction

1.1. Subject-matter of the doctoral thesis

The objects of considerations are thin linearly elastic Kirchhoff-Love-type open
circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in circumferential direction.

It means, that on the microscopic level, the shells under consideration
consist of a very large number of separated, small elements regularly distributed
along circumferential direction and perfectly bonded to each other (or to the
homogeneous matrix). These elements, called cells, are treated as thin shells. It is
assumed that the adjacent cells are nearly identical (i.e. they have nearly the
same geometrical, elastic and inertial properties), but the distant elements can
be very different. The length dimension of a cell in circumferential direction,
called the microstructure length parameter, is assumed to be very large
compared with the maximum shell thickness and very small as compared to
the midsurface curvature radius as well as the length dimension of the shell
midsurface in the direction of tolerant periodicity. Examples of such shells are
shown in Figs. 4.1 and 4.2. At the same time, the shells have constant structure in
axial direction. On the microscopic level, the geometrical, elastic and inertial
properties of these shells are determined by highly oscillating, non-continuous
and tolerance-periodic functions in circumferential direction. Roughly speaking,
by tolerance-periodic functions we shall mean functions which in every cell can be
approximated by periodic functions.

On the other hand, on the macroscopic level, the averaged properties of
the shells are described by functions being continuous and slowly varying
along circumferential direction. It means that the tolerance-periodic shells under
consideration can be treated as made of functionally graded materials (FGM),
cf. Suresh and Mortensen [110], and called functionally graded shells. Moreover,
since macroscopic properties of the shells are graded in direction normal to
interfaces between constituents, this gradation is referred to as the transversal
gradation.

The subject-matter of this doctoral thesis is the analytical modelling of
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dynamic problems for the shells under consideration and the investigation of
the effect of a cell size on the macroscopic and microscopic shell behaviour (the
length-scale effect).

The considerations will be based on the well-known Kirchhoff-Love theory of
thin linearly elastic cylindrical shells in which terms depending on the second
metric tensor of the shell midsurface are neglected in the formulae for curvature
changes, cf. Kirchhoff [49], Love [60], Kaliski [46]. For periodic or tolerance-periodic
shells, the exact partial differential equations of this theory include strongly
oscillating, non-continuous and periodic or tolerance-periodic coefficients. That is
why the direct application of these equations to investigations of specific problems
is non-effective even using computational methods.

To obtain averaged equations with constant or continuous and slowly-varying
coefficients, a lot of different approximate modelling methods have been proposed.
Periodic and tolerance-periodic structures are usually described using homogenized
models derived by means of asymptotic methods, cf. Chapter 2. These models
represent certain equivalent structures with constant or slowly varying material
properties. Unfortunately, in models of this kind the effect of the microstructure
size on the overall shell behaviour is neglected in the first approximation which is
usually employed.

An alternative (i.e. non-asymptotic) approach to the modelling of micro-
heterogeneous media was proposed by Wozniak in a series of papers and
summarized in monographs by Wozniak and Wierzbicki [168], Wozniak, Michalak
and Jedrysiak (eds.) [166], Wozniak et al. (eds.) [164]. This technique is called the
tolerance modelling method. The concept of tolerance relations between
points and real numbers related to the accuracy of the performed measurements
and calculations plays a leading role in formulation of this technique. The
tolerance relations are determined by the tolerance parameters. The second
basic concepts of this method is a function slowly-varying within a cell. It
is a function which, together with its derivatives occurring in the problem under
consideration, can be treated as constant within every cell. The basic assumptions
of this modelling technique are called the micro-macro decomposition and
the tolerance averaging approximation. The first assumption states that the
displacement fields can be decomposed into macroscopic and microscopic parts.
The macroscopic part is represented by unknown averaged slowly-varying
displacements. The highly oscillating microscopic part is described by the
pertodic or tolerance-periodic known fluctuation shape functions and by
unknown slowly-varying fluctuation amplitudes. The second assumption
states that in the course of modelling the terms of the orders of tolerance
parameters are neglected. The fundamental concepts and assumptions of the
tolerance modelling procedure are presented in Chapter 3. Models obtained in
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the framework of the tolerance modelling procedure are called the tolerance
models. The governing equations of the these models have coefficients
which are constant or continuously slowly-varying and depend on the
microstructure size. Hence, the main advantage of the tolerance models is that
in contrast to asymptotic models they make it possible to describe the effect of
microstructure size on a shell behaviour not only on the micro-structural level but
also on the macroscopic one.

The overview of the modelling techniques applied to micro-heterogeneous
structures is given in Chapter 2.

In the presented dissertation, the tolerance averaging technique
is adopted to the modelling of the known governing equations of
Kirchhoff-Love theory of thin linearly elastic cylindrical shells. These
equations will be taken in the form of Euler-Lagrange equations generated by the
Lagrange function describing behaviour of the shells in the framework of the theory
under consideration. Functional coefficients of this function are tolerance-periodic,
highly oscillating and often non-continuous in circumferential direction. The
tolerance averaging of the Lagrange function under micro-macro decomposition
and under the tolerance averaging approximation leads to the averaged form
of this function with continuous and slowly-varying coefficients depending on
the microstructure size. Then, applying the principle of stationary action to the
tolerance-averaged action functional defined by means of the averaged lagrangian,
we arrive at the governing equations of tolerance model for the shells under
consideration. Coefficients of these equations are continuous and slowly-varying
along arc coordinate and some of them depend on the microstructure length
parameter. It means that the resulting tolerance model equations describe the
effect of the cell size on the overall shell dynamics.

In order to evaluate the length-scale effect in some special dynamic
problems, the results obtained by applying the tolerance modelling
procedure are compared with those derived from asymptotic model of the
functionally graded shells under consideration. In order to formulate this
model, a certain new approach to the asymptotic modelling of micro-heterogeneous
media proposed in Wozniak et al. (eds.) [164] is adopted. This new approach, called
the consistent asymptotic modelling, does not take into account the influence
of the microstructure size on the overall shell behaviour.

The dynamic problems for the shells under consideration are also
modelled by means of combined procedure, proposed by WozZniak et
al. (eds.) [164], in which tolerance non-asymptotic and consistent
asymptotic techniques are combined together into a new procedure. An
important advantage of the combined model is that under special conditions imposed
on the fluctuation shape functions it makes it possible to separate the macroscopic
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description of some special problems from their microscopic description. Moreover,
it will be also shown that in the framework of combined model we can analyse
the near-boundary and the near-initial phenomena related to the specific form of
boundary and initial conditions imposed on micro-fluctuations of displacements.

The derived averaged models will be applied to investigations of
the length-scale effect in some special problems of dynamics for the
transversally graded shells under consideration. Because equations of the
proposed models have slowly-varying functional coefficients hence it is difficult to
find exact analytical solutions to these equations. To solve the vibration or wave
propagation problems discussed here the known Ritz or Galerkin approximate
methods will be applied.

1.2. Aims of the doctoral thesis

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with a
smooth, slowly varying transversal gradation of macroscopic properties and with
a tolerance-periodic microstructure in circumferential direction are analysed.

The first atm of this doctoral thesis is to formulate and discuss three
new mathematical averaged models for the analysis of selected dynamic
problems in the cylindrical shells under consideration:

e tolerance model with continuous and slowly-varying coefficients
depending on a cell size, derived by applying a certain new approach to
the tolerance modelling of micro-heterogeneous solids presented in Wozniak
et al. (eds.) [164],

e consistent asymptotic model with continuous and slowly-varying
coefficients being independent of the microstructure size, obtained
by using a certain new approach to the asymptotic modelling of
micro-heterogeneous media proposed in Wozniak et al. (eds.) [164],

e combined asymptotic-tolerance model with continuous and
slowly-varying coefficients depending on the cell size, derived
by applying the combined modelling which includes both the tolerance and
asymptotic procedures; this technique has been presented in Wozniak et al.
(eds.) [164]; the main advantage of this model is that it makes it possible to
study micro-dynamics of the tolerance-periodic shells independently of their
macro-dynamics.

The resulting equations of the above models will be presented in the form
of Euler-Lagrange equations and also in the form of the dynamic equilibrium
equations together with the constitutive relations.
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The second aim of the dissertation is to apply the tolerance and
asymptotic models derived here to evaluation of the length-scale effect
in some special problems dealing with dynamics (free vibrations) of the
micro-heterogeneous shells under consideration.

The third aim is to apply the combined model to the analysis of
length-scale effect in some special problems for micro-dynamics of the
shells under constideration. It will be shown that the combined model
makes it possible to separate the macroscopic description of some
spectal problems from the microscopic description of these problems.

Theses of the doctoral dissertation are:

e The tolerance and the consistent asymptotic models of dynamic problems
for the functionally graded shells under consideration derived here can be
successfully applied to analyse the macroscopic behaviour of these shells.
Moreover, the tolerance model makes it possible to determine and study
some phenomena related to existence of microstructure length-scale effect,
e.g. the occurrence of the additional higher-order cell-dependent free vibration
frequencies.

e The proposed combined asymptotic-tolerance model of dynamic problems for
the shells under consideration allows us to successfully study cell-dependent
micro-vibrations of the tolerance-periodic shells independently of the shells’
cell-independent macro-vibrations. Moreover, this model makes it possible
to analyse length-scale effect in wave propagation problems as well as
in boundary layer phenomena related to micro-fluctuations of the shell
displacements.

1.3. Scope of the doctoral thesis

The dissertation begins with a list of symbols.

The object and aim of the doctoral dissertation are specified in Chapter 1.

An overview of the modelling techniques applied to periodic/tolerance-periodic
structures is given in Chapter 2.

To make considerations self-consistent, in the subsequent chapter we shall
outline the basic concepts and assumptions of the tolerance modelling technique
and of the consistent asymptotic approach, following monographs by WozZniak et
al. (eds.) [164] and Ostrowski [90].

The shell geometry is described and the cell is defined in Chapter 4. In this
chapter there are also shown the governing equations of the Kirchhoff-Love theory
of thin elastic cylindrical shells being a starting point of the modelling procedures.
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In Chapter 5, the tolerance, asymptotic and combined models for the analysis
of special dynamic problems in functionally graded shells under consideration are
derived and discussed in detail.

In Chapter 6, there are shown applications of the proposed tolerance and
asymptotic models to analysis of the length-scale effect in some special problems
for dynamics of the shells under consideration. The comparison and discussion
of the results are presented. Moreover, some results derived in the framework of
the tolerance and asymptotic models are compared with those obtained from the
commercial software Ansys based on the finite element method.

In Chapter 7, there are shown applications of the proposed combined
asymptotic-tolerance model to investigations of selected problems of the shell
micro-dynamics as cell-dependent free micro-vibrations, the long wave propagation
problem related to micro-fluctuations and certain boundary-layer phenomena.

Final remarks and conclusions are formulated in the last chapter. This
chapter ends with a list of the most important original elements of the doctoral
dissertation and the anticipated directions of further research.

The doctoral thesis is finished by Appendix, the list of references, summary, and
summary in Polish. Appendix deals with calculations of coefficients in averaged
models equations describing the dynamic problems discussed in the application
part of this dissertation, i.e. in Chapters 6, 7.

The functionally graded shells being objects of considerations in this doctoral
dissertation are widely applied in civil engineering, most often as roof girders and
bridge girders. They are also widely used as elements of housings of reactors and
tanks. Micro-heterogeneous shells having small length dimensions are elements of
air-planes, ships and machines.

Note, that some of the results obtained during the realization of the topic of the
doctoral dissertation have been published by Tomczyk and Szczerba in [146-151].

1.4. Summary of notations

Throughout the book the index notation is used.

Sub- and superscripts «,f,... take the values 1,2 and are related to
orthonormal parametrization (xl, :z:2) introduced on the shell midsurface;
summation convention holds.

Non-tensorial superscripts A, B, ... and a,b, ... run over sequences 1,2,..., N
and 1,2,...,n, respectively, where N > 1 and n > 1; the summation convention
with respect to these indices holds.

The partial differentiation related to z¢ is represented by d,. Moreover, it is
denoted 0. 5 = 0, . .. 0s. Differentiation with respect to time coordinate t € [to, t1]
is represented by the overdot.
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Symbol O (§), § > 0, stands for an arbitrary function of § such that O (§) # 0
for every 6 and § — 0 implies O (0) — 0, O (§) /0 — ¢ for some ¢ # 0.
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2. Overview of modelling techniques applied
to periodic and tolerance-periodic
structures

The doctoral thesis deals with micro-heterogeneous cylindrical shells which, on
the micro level, consist of a very large number of separated small elements (cells)
perfectly bonded to each other and regularly distributed along circumferential
direction. The adjacent cells are of nearly identical geometrical and material
properties, but the distant elements can be very different. On the macro level,
this tolerance-periodic microstructure implies a macroscopically inhomogeneous
structures but with a continuous and slow variation of averaged properties. Such
shells are called functionally graded shells. Note, that if the geometrical
and material structure of every cell is identical then we deal with periodically
heterogeneous shells having constant macroscopic (averaged) properties.

The mechanical/thermal behaviour of periodic or tolerance-periodic
(functionally graded) micro-heterogeneous solids (e.g. beams, plates, shells,
laminates) is described by means of partial differential equations with periodic
or tolerance-periodic, highly oscillating and often discontinuous functional
coefficients. Hence, they cannot be directly applied to investigations of
engineering problems. To obtain averaged equations with constant or continuously
slowly varying coefficients, a lot of different approximate modelling methods
for composites of this kind have been proposed. We shall restrict our
considerations to the best known analytical procedures. It has to be
emphasized that functionally graded structures are often analysed in the
framework of averaging approaches similar to those applied to periodic structures,
which on the macro level are macroscopically homogeneous.

The overview of modelling techniques used for the analysis of mechanical,
thermal or coupled thermo-mechanical problems for periodic as well as functionally
graded composite materials and structures can be found in the monographs by
Bakhvalov and Panasenko [5], Bensoussan et al. 9], Jikov et al. [42], Jones [43],
Sanchez-Palencia [108], Lewinski and Telega [59], Suresh and Mortensen [110],
Nemat-Nasser and Hori [89], Wozniak and Wierzbicki [168], Wozniak, Michalak
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and Jedrysiak (eds.) [166], Wozniak et al. (eds.) [164] and also in paper by Reiter
et al. [105].

Mathematical modelling methods related to periodically or locally
periodically (called tolerance-periodically in the presented doctoral dissertation)
micro-heterogeneous composites can be divided into general and special
modelling techniques. The general modelling methods concern large class of
micro-heterogeneous media without the specification of the micro-heterogeneity.
On the other hand the special modelling procedures are formulated for certain
selected forms of the micro-heterogeneity and can be applied only for some specific
forms of coefficients in partial differential equations describing behaviour of the
micro-inhomogeneous structures.

We mention here two special modelling techniques: the effective stiffness
theory, cf. Herrmann and Achenbach [21], and the Floquet- Bloch wave theory,
cf. Stoker [109], Lee [55], which are applied to the analysis of wave propagation
problems for one-dimensional periodic structures such as layered media or for
periodically and directionally reinforced composites. Both these methods make it
possible to take into account the dispersion phenomena in the micro-heterogeneous
solids. Some results obtained by applying approaches mentioned above are
discussed in Achenbach, Sun and Herrman [2|, Herrmann, Kaul and Delph [22],
Christensen [13], Kohn, Krumhansl and Lee [50].

Among the general mathematical modelling methods we can mention
homogenization  for  periodic and  local-periodic structures,
higher-order homogenization for periodic and local-periodic structures,
homogenization by micro-local parameters, tolerance modelling method.

Periodic/tolerance-periodic ~ structures are wusually described using
homogeneized models derived by means of asymptotic methods. These
models represent certain equivalent structures with constant or continuously
slowly varying geometrical and material properties. Homogenization is based on
a formal limit passage with length dimensions of a cell to zero. Thus, in the first
approximation the homogenized equations neglect the effect of a microstructure
size on the macroscopic behaviour of the periodic/tolerance-periodic structures
(the length-scale effect). This effect plays an important role mainly in the
vibration and wave propagation analysis as well as in dynamical stability
problems.

The mathematical foundations of this modelling technique can be found
in Bakhvalov and Panasenko [5], Bensoussan et al. [9], Jikov et al. [42],
Jones [43], Panasenko [95|, Sanchez-Palencia [108]. Applications of the
asymptotic homogenization procedure to modelling of stationary and
non-stationary phenomena for periodically micro-heterogeneous shells
(plates) are presented in a large number of contributions. From the
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extensive list on this subject we can mention publications by Andrianov et al.
[4], Caillerie [11], Challagulla et al. [12|, Georgiades et al. [19], Kalamkarov
[45], Lewinski [56], Lewinski and Telega [58, 59|, Lutoborski [61], Kohn and
Vogelius [51]|. Local-periodic structures, which can be treated as made of
functionally graded materials, can also be analysed in the framework
of homogenization methods. Using the known concept of the G-convergence
approach, which is a generalization of the homogenized procedure, cf. Jikov et al.
[42], homogenization models for local-periodic structures can be derived.
These models are used to investigate various problems for functionally graded
materials in many papers, e.g. in Miller and Lanutti [83], Itoh, Takahashi and
Takano [24]|. Some other methods applied in the modelling of functionally graded
media are discussed in the paper by Reiter et al. [105] and in monographs by Suresh
and Mortensen [110], where extensive lists of references can be found. Asymptotic
approach to vibrations of functionally graded cylindrical shells can be found in
Pradhan et al. [101], Rahimi, Ansari and Hemmatnezhad [104], Isvandzibaei,
Jamaluddin and Hamzah 23], Young-Wann Kim [169].

As mentioned above, in the first approximation, the homogenized equations
neglect the effect of a microstructure size on the macroscopic behaviour of the
periodic/tolerance-periodic structures. In order to derive the length-scale models,
the higher-order homogenization has to be applied. The second or higher
order approximations must be formulated in the framework of this approach.
However, models of this kind have a complicated analytical form. Hence, their
applications to the investigations of boundary-value problems often leads to a
large number of boundary conditions, which may be not well motivated from the
physical viewpoint, cf. Fish and Wen Chen [18], Lewinski and Kucharski [57], where
length-scale effect in periodic composites is analysed, Aboudi et al. [1]|, where effects
related to microstructure of functionally graded composites are studied.

Homogenization can be also realized using a concept of micro-local
parameters. This approach is based on some postulated a priori physical
assumptions. Governing equations of the homogenized model are given in terms
of the averaged unknown fields and certain extra unknowns called microlocal
parameters. Homogenization by micro-local parameters was proposed by
Wozniak [160, 161], Matysiak and Wozniak [72]. Averaged models of this kind were
applied for solving of various mechanics/thermomechanics problems in a series of
papers, e.g. by Matysiak and Nagorko [67, 68] and by Wagrowska [153|, where some
stationary problems of multilayered elastic plates and of elastic-plastic composites
are investigated, respectively; by Matysiak [65], Matysiak and Ukhanska [71],
Matysiak and Yevtushenko |73], Matysiak, Pauk and Yevtushenko [69], Matysiak
and Perkowski [70] or Kulchytsky-Zhyhailo, Matysiak and Perkowski [54], where
heat conduction in periodically layered composites is studied; by Matysiak,
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Mieszkowski and Perkowski [66], where surface waves in a periodic two-layered
half-space are analysed; by Kaczyriski and Matysiak [44|, where crack problems in
micro-periodic reinforced elastic composite are investigated.

The periodically micro-heterogeneous shells (plates) are also
modelled as homogeneous orthotropic structures, cf. Ambartsumyan [3],
Brush and Almroth [10], Grigoluk and Kabanov [20]. The orthotropic model
equations with coefficients independent of the microstructure length parameter can
not be used to the analysis of phenomena related to existence of microstructure
length-scale effect, e.g. the dispersion of waves, the occurrence of additional
higher-order free vibration frequencies and additional higher-order critical forces
depending on the cell size.

A new non-asymptotic approach applied to the modelling of mechanical and
thermal phenomena in continuum and discrete micro-heterogeneous structures
or composite materials was proposed and developed by Wozniak in a large
number of papers, e.g. [162, 163| and summarized in the monographs by Wozniak
and Wierzbicki [168]|, Wozniak, Michalak and Jedrysiak (eds.) [166], Wozniak et
al. (eds.) |164]. Mathematical formulation of this approach can be also found
in Ostrowski [90]. This technique, called the tolerance modelling method,
is based on the concept of tolerance relations between points and real
numbers related to the accuracy of the performed manipulations or calculations.
The tolerance relations are determined by the tolerance parameters. The
other basic concepts of this procedure are those of slowly-varying functions,
tolerance-periodic functions, fluctuation shape functions and the
averaging operation. The tolerance modelling is based on two assumptions.
The first of them is called the tolerance averaging approxrimation and makes
it possible to neglect terms of an order of tolerance parameters. The second
one is termed the micro-macro decomposition. This assumption states that
the kinematic or thermal fields occurring in the problem under consideration
can be decomposed into wunknown averaged displacements or temperature,
slowly-varying in directions of periodicity or tolerant periodicity and highly
oscillating fluctuations caused by a peritodic or tolerance-periodic structure of the
composite medium. These kinematic/thermal fluctuations are represented by the
finite series of products of the known highly oscillating, periodic/tolerance-periodic
fluctuation shape functions and unknown fluctuation amplitudes slowly-varying in
periodicity/tolerance-periodicity directions. The cell-dependent fluctuation shape
functions represent either the principal modes of free periodic vibrations of a cell or
physically reasonable approximations of these modes. Hence, they can be obtained
as solutions to certain periodic eigenvalue problems related to free cell vibrations.
In stationary problems, these functions can be treated as the shape functions
resulting from the finite element periodic discretization of the cell. The choice of
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these functions can be also based on the experience or intuition of the researcher.
The main modelling concepts and assumptions mentioned above are explained in
Chapter 3 of this doctoral thesis. Governing equations of the tolerance models
have constant or slowly-varying coefficients depending also on the microstructure
size. It means that the tolerance modelling makes it possible to analyse the
effect of a cell size on the overall behaviour of the composite medium.

Applications of the tolerance modelling technique to investigations of selected
elastodynamic and/or stability problems for various periodic structures are
shown in a large number of contributions, e.g. for lattic-type or cellular media by
Cielecka [14], Cielecka, Wozniak Cz. and Wozniak M. [15]; for Euler-Bernoulli-type
beams by Mazur-Sniady [74], Mazur-Sniady, Sniady and Zielichowski-Haber [75],
Swigtek, Jedrysiak and Domagalski [112]; for Kirchoff-type plates by Jedrysiak
[25-30], Nagorko and Wozniak [88], Nagorko [84-86]; for Hencky-Bolle-type plates
by Baron [6-8|, Jedrysiak and Pas [37]; for wavy-type plates by Michalak, Wozniak
Cz. and Wozniak M. [82], Michalak [76, 77|; for three-layered plates with inert
core by Marczak and Jedrysiak [64]; for periodic cylindrical shells by Tomczyk
[115-136], Tomczyk and Wozniak [152], Tomczyk and Mania [145], Tomczyk and
Litawska [140-144], Tomczyk et al. [137, 138|. Note, that in papers [140-144]| the
dynamic or stability problems are investigated in the framework of a certain
extended version of the classical tolerance modelling technique. This version,
proposed by Tomczyk and Wozniak in [152], is based on a new notion of weakly
slowly-varying function being an extension of the known more restrictive
concept of slowly-varying functions occurring in the classical tolerance approach.
General tolerance models derived by means of this extended tolerance averaging
procedure include a bigger number of length-scale terms than those formulated by
applying the classical tolerance modelling.

Elastostatics of thin periodically stiffened plates with moderately large
deflections was studied by Domagalski and Gajdzicki [16].

Some thermal/thermal-elasticity problems of micro-periodic composites
are also investigated by applying the tolerance modelling technique. Heat
conduction problems were studied by Wozniak Cz., Baczynski and Wozniak M.
[165], Lacinski and Wozniak [62], Nagorko and Piwowarski [87], Ostrowski and
Jedrysiak [91], Ostrowski and Michalak [92|, Rychlewska, Szymczyk and Wozniak
[106], Wierzbicki and Mazewska [155], Wierzbicki [154], Tomezyk and Gotabczak
[139].

In the last years the tolerance modelling technique is adopted and extended
for non-periodic structures, e.g. made of a functionally graded material. Tolerance
averaging of equations describing behaviour of those structures leads to equations
with continuous and slowly-varying coefficients depending of the microstructure
size.
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Tolerance models of dynamic or stability problems for different
functionally graded structures are proposed in many contributions, e.g.
for laminates by Rychlewska and Wozniak [107], Szymczak and Wozniak [111];
for thin Kirchoff-type transversally graded plates by Kazmierczak and Jedrysiak
[47, 48], Jedrysiak and Kazmierczak-Sobiniska [35], Jedrysiak [32-34]; for thin
longitudinally graded plates by Michalak [78, 79], Wirowski [156-159], Michalak
and Wirowski [81], Jedrysiak and Michalak [36]; for laminated plates by Jedrysiak,
Rychlewska and Wozniak [41]; for laminated shells by Wozniak, Rychlewska and
Wierzbicki [167]; for thin functionally graded plates with system of ribs by Rabenda
and Michalak [102], Michalak and Rabenda [80]; for transversally or longitudinally
graded cylindrical shells by Tomezyk and Szczerba [146-151].

Applications of the tolerance averaging technique to analyse heat
conduction or thermoelastic problems in functionally graded structures
are presented in a large number of papers and books, e.g. for longitudinally
graded hollow cylinder by Ostrowski and Michalak [92-94], Ostrowski [90]; for
transversally graded laminates by Radzikowska and Jedrysiak [103], Jedrysiak and
Radzikowska |39, 40|, Pazera and Jedrysiak [99, 100|, Jedrysiak and Pazera [38].

Various mechanical and thermal as well as coupled thermo-mechanical
problems for functionally graded laminates, thin plates and shallow shells are
discussed by Jedrysiak in monograph [31], where the extended list of references on
this topic can be found.

It has to be emphasized that by means of a certain formal analytical procedure
we can pass directly from the tolerance models to new asymptotic ones. These
asymptotic models can be also obtained independently of tolerance modelling
by applying the consistent asymptotic averaging proposed by Wozniak in
[164]. In this approach, the kinematic/thermal fields occurring in the problem
under consideration are decomposed into highly-oscillating part depending on a
certain parameter € € (0, 1] and averaged part independent of this parameter. The
highly-oscillating part is determined by the known fluctuation shape functions,
which similarly as in the tolerance modelling can be obtained as solutions to
certain periodic eigenvalue problems or by means of the finite element periodic
discretization of the cell or by means of experience/intuition of the researcher.
If these functions are not derive as solutions to eigenvalue problems then the
effective moduli are obtained without specification of the periodic cell
problems. It is a very important advantage of these asymptotic models because in
most cases obtaining the solutions to the cell problems is not easy. This situation is
different from that occurring in the known asymptotic homogenization approach,
where only solutions to the periodic cell problems make it possible to define the
effective moduli of the considered structure. It is worth mentioning that not
only the consistent but also the semi-consistent asymptotic modelling procedure is
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formulated by WozZniak in monograph [164]. It has to be emphasized that contrary
to consistent asymptotic models equations, the resulting differential equations of
the semi-consistent asymptotic models describe the effect of microstructure size
on the overall medium behaviour. Many applications of the asymptotic modelling
techniques mentioned above to various problems in microstructured media are
shown in [164].

In the presented doctoral thesis, the attention is focused on the
continuum mathematical modelling of dynamic problems for tolerance-periodically
micro-heterogeneous cylindrical shells. However, some analytical results are
compared with numerical those obtained using the commercial computer software
Ansys based on the finite element method (FEM). For this reason, it is worth
mentioning here papers by Pawlus [96-98|, where stability or dynamic problems
for annular layered plates with heterogeneous structure in radial or transversal
direction are modelled using commercial computer software Abaqus based on
FEM. We also mention publications by Kotakowski and Mania [52|, Mania [63],
Kotakowski and Teter [53], Teter, Mania and Kolakowski [114], Teter, Kotakowski
and Mania [113], where static/dynamic buckling/postbuckling problems for
functionally graded thin plates/shells subjected to mechanical/thermal/combined
dynamic-thermal loads are modelled with application of FEM software Ansys.

25



26



3. Concepts and assumptions of the
tolerance modelling technique

The partial differential equations or the pertinent integral functionals applied
to problems of micro-heterogeneous periodic or tolerance-periodic shells include
functional coefficients, which are periodic or tolerance-periodic, highly oscillating
and non-continuous. The averaging of these equations or integral functionals
realized by using the tolerance modelling technique leads to mathematical
models with constant or continuously slowly-varying coefficients depending on the
microstructure size, i.e. on the diameter of a basic cell. Hence, the tolerance model
equations make it possible to analyse the effect of a cell size on the overall shell
behaviour (the length-scale effect).

The averaging of the partial differential equations or the pertinent
integral functionals with highly oscillating, non-continuous and periodic or
tolerance-periodic coefficients can be also realized using asymptotic procedures,
cf. Bensoussan et al. [9], Jikov et al. [42], Wozniak et al. (eds.) [164]. Asymptotic
modelling used for these equations and integral functionals leads to mathematical
models with constant or continuously slowly varying coefficients. However, the
asymptotic procedures are performed by limit passages with the microstructure
length to zero. Hence, the resulting equations are not able to describe the length
scale phenomena.

In order to take into account the length-scale effect in dynamic problems for
functionally graded shells being object of considerations in the presented doctoral
dissertation, the mathematical, non-asymptotic tolerance modelling procedure is
applied.

Below, i.e. in Subsections 3.1 and 3.2, the basic concepts and assumptions of
this tolerance modelling technique are presented, following monographs by Wozniak
and Wierzbicki [168], Wozniak, Michalak and Jedrysiak (eds.) [166], WozZniak et
al. (eds.) [164], Tomczyk and Wozniak [152], Ostrowski [90].

Moreover, the general line of the consistent asymptotic modelling procedure
proposed by Wozniak in [164] and applied in this dissertation is outlined in
Subsection 3.3.
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3.1. Fundamental concepts of the tolerance modelling
procedure

The fundamental concepts of the tolerance modelling approach under consideration
are those of two tolerance relations between points and real numbers determined
by tolerance parameters, slowly-varying functions, tolerance-periodic functions,
fluctuation shape functions and the averaging operation.

3.1.1 Tolerance relations

The leading role in formulation of the tolerance modelling technique plays the
concept of tolerance relation. We shall introduce two special tolerance relations.

Tolerance relation between points
Let €2 be a regular region in physical space E™ and A be a positive real number.
Points x = (z1,...,Zm), ¥ = (Y1, - - ., Ym) belonging to Q are said to be in tolerance

A
relation determined by A\, x =~ y, if and only if the distance between points x, y
does not exceed A, i.e. ||x —y||gm < A

Tolerance relation between real numbers

Let § be a positive real number. Real numbers p, v are said to be in tolerance

~ 6 ~
relation determined by §, p ~ v, if and only if |u — v| < 4.

Positive parameters A, d are called tolerance parameters.
Tolerance parameter A\ was introduced by Zeeman [170] and the tolerance

A
relation =~ was interpreted from a_physical point of view as a certain
indiscernibility relation. Parameter § introduced by Fichera [17] was physically
interpreted as a certain "upper bound for negligibles".

3.1.2 Slowly-varying functions

We recall that 2 is a regular region in E™, points of {2 are denoted by

x=(r1,...,%p) and ¥y = (y1,...,Ym). Let = be a regular region in E"™ for
n > m. Points of = are denoted by £ = (&1, ...,&—m). If n = m then = and & drop
out from considerations. Let 0 stand for gradient operator in Q; 9 = (01, ..., 0n),

0; = 0/0x;, i =1,2,...,m. Denote by 9* the k-th gradient in Q.
Define a closed subset A of E™

A=[-M/20/2 X o X A/ 2, A/ 2,
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where Ay > 0,...,\,, > 0. By A we denote diameter of A, which is assumed to be
sufficiently small when compared to the smallest characteristic length dimension
of ). Let us also denote

Ax)=x+4A, Qa={xeQ:Ax)CQ}.

Subsequently, subset A of E™ will be called the basic cell with m as a cell
dimension. Every A(x), x € Qa, will be referred to the cell in Q0 with the centre
at x, Q2 is called the set of all centers.

Let F(-) € CF(Q), where CF(Q) is a space of functions being continuous,
bounded and differentiable in Q@ C E™ together with their gradients up to the
R-th order. Nonnegative integer R is assumed to be specified in every problem
under consideration. Note, that function F' can also depend on £ € = (if n > m)
and time coordinate ¢ as parameters. Let us denote by 6 = (A, dg, 1, ..., dr) the set
of tolerance parameters. The first of them represents the distances between points
in Q, the second one and the k-th one, k = 1,2, ..., R, are related to the differences
in appropriate space between the values of function F(-) and its gradient OF F'(-)
in points x,y belonging to € such that |[x —y| < .

Function F(-) will be referred to as the slowly-varying of the R-th kind (with
respect to cell A and tolerance given by d = (), dg, 01, ...,0r)), if and only if the
following two conditions are satisfied

() (Y(xy) € P)[(x~y) = F(x) 2 F(y) and
P F(x)% 0 F(y), k=1,2,...,R) (3.1)

Ik
~ 0

(i) wxem[WMF@) . k=12,...,R|.

Under above conditions we shall write F' € SV{(Q, A).

In the applications of the tolerance modelling, tolerance parameter A is known
a priori as a certain microstructure length, whereas values of tolerance parameters
00,01, . ..,0r can be determined only a posteriori, i.e. after obtaining solution to
the initial-boundary value problem under consideration.

Note, that a new notion of the weakly slowly-varying function F\(-),
F e WSVE(Q,A), being an extension of the concept of slowly-varying function
given above, has been introduced by Tomczyk and Wozniak in [152|. For the
weakly slowly-varying function the first from conditions (3.1) is satisfied only.
Tolerance model equations derived by applying the less restrictive concept of
weakly slowly-varying function contain a bigger number of terms depending on
a cell size than the model equations obtained by means of slowly-varying function
and hence they make it possible to investigate the length-scale effect in more detail.

In the present work the considerations will be based on the notion of
slowly-varying function.
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3.1.3 Tolerance-periodic functions

An essentially bounded and weakly differentiable function f defined on Q € E™,
which can also depend on ¢ € = (if n > m) and time coordinate ¢ as parameters,
is called tolerance-periodic of the R-th kind with respect to cell A and tolerance
parameters 6 = (A, dp), if for every x € Qa there exists A-periodic function f
such that f|A(x) N Dom f and f!A(x) N Dom f are indiscernible in tolerance
determined by 6 = (A, dy). Roughly speaking, function f is tolerance-periodic if
its values in an arbitrary cell A(x) can be approximated, with sufficient accuracy,
by the corresponding values of a certain A-periodic function ]ﬂ”v(x,z)7 z € A(x),
x € Qa. Function f is a A-periodic approzimation of f in A(x). For function
f(-) being tolerance-periodic together with its derivatives up to the R-th order,
we shall write f € TP(Q,A), 6 = (\,do,01,...,0r). We recall that nonnegative
integer R is assumed to be specified in every problem under consideration. It should
be noted that for periodic structures function f(x,-) has the same analytical
form in every cell A(x) with a centre at x € Qa. Hence, f is independent
of x and we have f = f(z),z € A(x),x € Qa. In the general case, i.e. for
tolerance-periodic structures (i.e. structures which in small neighbourhoods of
A(x) can be approximately regarded as periodic) being objects of considerations
in this work, fdepends on x and hence we have f: f(x, z),z € A(x), X € Qa.

3.1.4 Fluctuation shape functions

Let h be a tolerance-periodic, highly oscillating function defined in Q € E™,
which is continuous together with gradients 0*h,k = 1,2,...,R — 1 and has
a piecewise continuous (or in special cases continuous) bounded gradient 9Fh.
Tolerance-periodic function h(-) will be called the fluctuation shape function of
the R-th kind, h € FSE(Q,A), if it depends on \ as a parameter and satisfies
conditions

heO()\R>, akheO(AR"“>, k=1,2,.... R, (3.2)
/ i(x,2)h(x,z)dz =0, x € Qa, (3.3)
Alx)

for p1(-) being a certain positive valued tolerance-periodic function defined in €.
Note, that condition (3.3) holds in dynamic problems. In stationary problems this
condition is replaced by

/ h(x,z)dz = 0.

A(x)

30



Moreover, for every F e SVE(Q,A) and he FSE(Q,A), function
I(-) = h(-)F(-) € TPE(Q, A) satisfies condition

/Gkﬁ(x,z)dz:F(x) / O h(x,z)dz,
Ax) A(x)

k=01,...,R, 9=9, h=h.

3.1.5 Averaging operation

Let f be a function defined in Q € E™, which is integrable and bounded in every
cell A(x), x € Qa. By the averaging of f(-) we shall mean function (f(-)) (x),
x € Qa, defined by

() )= {F)x) = |T1| / F(x,2)dz, X € Qa, (3.5)
A(x)

where f(x,-) is a periodic approximation of f in A(x). It should be noted that if
f is a A-periodic function then (f) is constant in every A. For tolerance-periodic
structures, being objects of considerations in this work, (f) (x) is a slowly-varying
function in x.

3.2. Basic assumptions of the tolerance modelling
procedure

The tolerance modelling is based on two assumptions, which are strictly related
to the concepts of the tolerance-periodic, slowly-varying and fluctuation shape
functions. The first assumption is called the tolerance averaging approximation.
The second one is termed the micro-macro decomposition.

3.2.1 Tolerance averaging approximation

Let f be an arbitrary integrable tolerance-periodic function defined in Q € E™,
f € TPE(Q,A), and let F € SVE(Q, A). Moreover, for every F € SVi#(Q2, A) and
h € FSE(Q,A) we define function 9(-) = h(-)F(-) € TPE(Q,A). The tolerance
averaging approximation has the form

< fa’fF> (x) = (f) (X)P"F(x) +0(), k=0,1,...,R, "F(x)=F(x),

(3.6)
(FOrd) (x) = (fO (hF)) (x) = (fO"h) (x)F(x) + O(), r=1,2,...,R.
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In the course of modelling, terms O(d), § = (A, dg, d1, . .., 0r), will be neglected.

Approximations (3.6) follow directly from conditions (3.1) satisfied by the
slowly-varying functions and from condition (3.4) which holds for the fluctuation
shape functions.

Let us observe that the slowly-varying functions can be regarded as invariant
under averaging.

Approximations given above will be applied in the modelling problems
discussed in this dissertation. For details the reader is referred to Wozniak and
Wierzbicki [168], Wozniak, Michalak and Jedrysiak (eds.) [166], Wozniak et al.
(eds.) [164], Tomczyk and Wozniak [152], Ostrowski [90].

3.2.2 Micro-macro decomposition assumption

The micro-macro decomposition states that the displacements fields, being
unknowns of the partial differential equations (or of pertinent integral functionals)
describing behaviour of microheterogeneous structure, can be decomposed into
unknown averaged (macroscopic) displacements being slowly-varying functions in
periodicity (or tolerant periodicity) directions and highly oscillating fluctuations.
Fluctuations of displacements are represented by the known highly oscillating
A-periodic or tolerance-periodic fluctuation shape functions multiplied by unknown
fluctuation (microscopic) amplitudes slowly-varying in periodicity (or tolerant
periodicity) directions.

Micro-macro decompositions introduced in the problems discussed in this
doctoral dissertation are presented in Subsections 5.1 and 5.3.

3.3. Basic concepts and assumptions of the consistent
asymptotic modelling procedure

The fundamental concepts of the consistent asymptotic procedure are those of the
fluctuation shape functions and the averaging operation. These concepts have been
explained in Subsection 3.1. It means that the consistent asymptotic modelling
does not require notions of tolerance-periodic and slowly-varying functions.

The fundamental assumption imposed on the starting lagrangian under
consideration in the framework of the asymptotic approach is called the consistent
asymptotic decomposition. It states that the displacement fields occurring in the
lagrangian have to be replaced by families of fields depending on parameter
e € (0,1] and defined in an arbitrary cell. These families of displacements
are decomposed into averaged part independent of ¢ and highly-oscillating part
depending on ¢.
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Consistent asymptotic decomposition introduced in problems discussed in this
doctoral dissertation is presented in Subsection 5.2.
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4. Formulation of the modelling problem

4.1. Thin cylindrical shells with a tolerance-periodic
microstructure and a functionally graded
macrostructure

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with
a tolerance-periodic microstructure in circumferential direction are analysed. It
means that on the microscopic level, the shells under consideration consist
of many separated, small elements regularly distributed along circumferential
direction and perfectly bonded to each other (or to the homogeneous matrix).
These elements, called cells, are treated as thin shells. It is assumed that
the adjacent cells are mearly identical (i.e. they have nearly the same
geometrical, elastic and inertial properties), but the distant elements can be
very different. As examples we can mention cylindrical shells made of two kinds
of tolerance-periodically distributed materials as shown in Fig. 4.1a or shells
with tolerance-periodically spaced stiffeners as shown in Fig. 4.2a. Note, that
the ribbed shell shown in Fig. 4.2 can be treated on the micro-level as a shell
with not only tolerance-periodically distributed elastic and inertial properties, but
also with tolerance-periodically distributed geometrical properties. At the same
time, the shells considered here have constant structure in axial direction. On the
microscopic level, the geometrical, elastic and inertial properties of these shells are
determined by highly oscillating, non-continuous and tolerance-periodic functions
in circumferential direction.

On the other hand, on the macroscopic level, the averaged (macroscopic)
properties of the shells are described by functions being continuous and slowly
varying along circumferential direction. It means that on the macro-level the
tolerance-periodic shells under consideration can be treated as made of functionally
graded materials (FGM), cf. Suresh and Mortensen [110], and called functionally
graded shells, cf. Figs. 4.1b, 4.2b. Moreover, since effective properties of the shells
are graded in direction normal to interfaces between constituents, this gradation
is referred to as the transversal gradation.
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Figure 4.1: Fragment of the shell made of tolerance-periodically distributed two component
materials: a) the microscopic point of view b) the macroscopic point of view
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a) L=1L

Figure 4.2: Fragment of the shell with two families of tolerance-periodically spaced stiffeners:
a) the microscopic point of view b) the macroscopic point of view
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1 2

We assume that z' and x° are coordinates parametrizing the shell
midsurface M in circumferential and axial directions, respectively. We denote
r=2'€Q=(0,L;)and £ = 2% € Z = (0, Ly), where Ly, L, are length dimensions
of M, cf. Figs. 4.1 and 4.2. Let O7'7%7? stand for a Cartesian orthogonal coordinate
system in the physical space E® and denote X = (z',7%,7%). A cylindrical
shell midsurface M is given by M = {x € E* :x =T (z!,2?), (2!,2?%) € Q@ x E},
where T(-) is the smooth invertible function such that OF/dz'-0F/dz* =0,
or/dz' - 0t /0x' = 1, Ot /0x?-OF/Ox* = 1. It means that on M we have introduced
the orthonormal parametrization, cf. Fig. 4.3. Note, that derivative Or/0x“,
a = 1,2, should be understood as differentiation of each component of T € E3,

i.e. Or/0x* = [OF"/0x®, OF? |0x®, OF° | 0x*].

Sub- and superscripts «a,3,... run over sequence 1,2 and are related to
midsurface parameters 2!, 2?; summation convention holds. Partial differentiation
related to z® is represented by 0,, i.e. 0, = 0/0z*. Moreover, it is denoted
Ou..5 = O ...0s. Differentiation with respect to time coordinate t € 1 = [to, t4]
is represented by the overdot.

Denote by ans and a®? the covariant and contravariant midsurface first
metric tensors, respectively. Under orthonormal parametrization introduced on
M, anp = a®? are the unit tensors. Let b,s stand for the covariant midsurface
second metric tensor. For the introduced parametrization byy = bjs = by = 0 and
b11 = —r~ 1L,

Let d(x) and r stand for the shell thickness and the midsurface curvature radius,
respectively.

The basic cell A and an arbitrary cell A(x) with the centre at point = € Qu
(Qn is a set of all cell centres) are defined by means of

A=[-N2,)/2],
Alz)=z+A=[z—)\2,2+)\/2], (4.1)
r € Qa, Qa={reQ:Ax) C Q},

where ) is a cell length dimension in 2 = z!-direction, cf. Figs. 4.1 and 4.2. The
microstructure length parameter X\ satisfies conditions: A/ max(d) > 1, A\/r < 1
and \/L; < 1.
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Figure 4.3: Parametrization of the shell midsurface

Setting z = 2! € [—/\/27 /\/2}, we assume that the cell A has a symmetry axis
for z = 0. It is also assumed that inside the cell the geometrical, elastic and inertial
properties of the shell are described by symmetric (i.e. even) functions of argument
2. At the same time, these functions are independent of argument & = 2% € =.

4.2. Fundamental equations

Denote by Uy = Ug (T, €, 1), w=w(x,§&t), r=2'eQ=(0,L),
E=22€=2=(0,Ly), t € I = [tg,t1], the shell displacements in the directions
tangent and normal to M, respectively. Elastic properties of the shell are described
by shell stiffness tensors D*%9(z), B*¥(x). Let p(x) stand for a shell mass
density per midsurface unit area. Let f*(z,¢,t), f(z,£,t) be external forces per
midsurface unit area, respectively tangent and normal to M.

The considerations will be based on the well-known simplified linear
Kirchhoff-Love theory of thin elastic shells in which terms depending on the
midsurface second metric tensor b,p are neglected in the formulae for curvature
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changes, cf. Kaliski [46]. In the framework of the shell theory under consideration,
strain energy function E(z,€,t), (x,£,t) €  x = x I, related to midsurface M has

the form )
E:§<wa%ﬁw+3ww%mw), (4.2)

where the membrane e =c¢cu5(x,&,t) and curvature k= Kqp(2,§,1),
(x,&,t) € Q x E x 1, strain tensors are

1
EaB = 5(8ﬁua + 8au5) — baﬁw, Rap = —0OqpW. (43)
The kinetic energy function K = K(z,¢,t) related to midsurface M and the
t

potential of external loadings F' = F(x,&,t), (z,&,t) € Q x Z x I, for the shell
under consideration are given by

1
K:im%wwﬂumm (4.4)
F = fu, + fw. (4.5)

We recall that a®” in (4.4) is the first metric tensor of the shell midsurface M,
which under orthonormal parametrization introduced on M is a unit tensor.
Let us introduce the action functional
L1 Lo t1
Ay, w) = ///L(a:, £, 1, 0pUa, Uy, Uy, Oapw, w, W)dtdéde, (4.6)

0 0 to

with lagrangian L being a highly oscillating function with respect to =, z € €.
Lagrangian L has the well-known form

L=K—-E+F, (4.7)

where kinetic energy K, strain energy E and potential of external loadings F' are
given above.

Substituting (4.2)-(4.5) into (4.7) and taking into account that for the
parametrization introduced on the shell midsurface M, the components b,z of
the second metric tensor of M are byy = bjg = by = 0 and by, = —r~ !, we arrive
at Lagrange function (4.7) in the form

1 2 1
L =— 3 (Do‘ﬁvéﬁgua&;uv + ;Daﬁllwégua + ﬁDllllww+
(4.8)
+ B 0agwdysw — pa® i — uwz) + fYuq + fw.
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The principle of stationary action applied to A (4.6) leads to the following
system of Euler-Lagrange equations

5, 0L 0L 00L _

P0(05ua)  Oug = Ot Ditg

o 0L 9L Q0L _
0 Oupw) Ow Ot O

0,
(4.9)
0,

From equations (4.9) combined with (4.8), we obtain the fundamental equations
of the shell theory under consideration in the explicit form

85(Da57585uv) + T’_lag(DaﬁHw) — ,uaaﬂilg + [ =0,

4.10
r DM Qg 4 Onp(B*°0 5w) + 12D M w + i — f = 0. (4.10)

In the above equations the displacements wu,(z,&,t), w(x, &, t),
(x,€,t) € QA x Ex 1, are the basic unknowns. For tolerance-periodic shells,
coefficients D*#(x), BY°(z), u(x), x € Q, of lagrangian L and hence also of
equations (4.10) are tolerance-periodic, highly oscillating and non-continuous
functions with respect to x. That is why obtaining the exact analytical
solutions to initial/boundary value problem for Euler-Lagrange equations (4.9)
or for their explicit form (4.10) in the most cases is not possible and also
numerical problems for these equations are ill conditioned. The first aim of this
dissertation is to "replace" these equations by equations with continuous and
slowly-varying coefficients depending also on microstructure size A. To this end
the non-asymptotic tolerance modelling technique and the consistent
asymptotic modelling procedure will be applied to action functional (4.6)
determined by Lagrange function (4.8). We recall that to make the analysis more
clear, in Chapter 3 we outlined the basic concepts and the main assumptions
of these modelling techniques following books by Wozniak and Wierzbicki [168],
Wozniak, Michalak and Jedrysiak (eds.) [166], Wozniak et al. (eds.) [164],
Tomczyk and Wozniak [152] and Ostrowski [90].
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5. Averaged models

In this chapter three averaged models of dynamic problems for the thin
transversally graded cylindrical shells under consideration will be derived:

e the tolerance model,
e the consistent asymptotic model,

e the combined asymptotic-tolerance model.

5.1. Tolerance model

In this subsection a new mathematical non-asymptotic averaged model for the
analysis of selected dynamic problems for thin shells with a tolerance-periodic
microstructure and a functionally (transversally) graded macrostructure in the
circumferential direction, cf. Figs. 4.1 and 4.2, will be derived applying the tolerance
modelling technique.

We recall that for the shells under consideration, we defined a bounded domain
Q) x = by means of Q = (0,L,) C E', Z = (0,Ly) C E. Points of  and Z
are denoted respectively by x = ! and € = 22. We also defined the basic cell as
A = [-)/2,)/2], where X = )i is a cell length dimension in z-direction and is
called the microstructure length parameter, cf. Chapter 4.

We recall that for the considered shells, coefficients in the fundamental
equations (4.10) are tolerance-periodic, highly oscillating and non-continuous
functions in = € ). At the same time, these coefficients are independent of
argument £ € =.

The tolerance modelling procedure for Euler-Lagrange equations (4.9) is
realized in two steps.

The first step is the tolerance averaging of lagrangian (4.8). To this end let us
introduce two systems of linear-independent highly oscillating fluctuation shape
functions, being tolerance-periodic in z: h* € FS}y(Q,A), a = 1,2,...,n and
gt € FS3(Q,A), A =1,2,...,N. These functions are assumed to be known in
every problem under consideration. They represent oscillations inside a cell. The
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functions depend on A as parameter and agree with (3.2) and (3.3) they have to
satisfy conditions

h* € O(N), Ao1h* € O(N),
g € O(N?), Aoig? € O(N?), N20y19" € O(N?),

(uh®) = <,ugA> =0 and <uh“hb> = <ugAgB> =0fora#b A#B,

where u(x) is the shell mass density being a tolerance-periodic function with
respect to x € ().

Taking into account that inside the cell the geometrical, elastic and inertial
properties of the shells under consideration are described by symmetric (i.e. even)
functions of argument z = 2! € A(x) (the cell has a symmetry axis for z = 0), we
assume that periodic approximation h%(z, z) of h%(z) in A(z), z € Qa is either
even or odd function with respect to z. This same restriction is imposed on periodic
approximation §4(z, 2) of fluctuation shape function g*(x). Let ¢ € TPE(Q, A),
be an even function with respect to z € A(z). Under aforementioned restriction,
averages (@hoih), (pgdig), (pd1gdi1g), which appear in the course of modelling
of tolerance-periodic shells are equal to zero.

Now, we have to introduce the micro-macro decomposition of displacements
Uo(7,&,t), uy € TPHQ,A), w(z, &, 1), w € TPE(Q,A), (z,&,t) € Q x Z x I, which
in the problem under consideration is assumed in the form

U (z,6,1) = ul (2,6, t) + h(2) Uz, &, 1), a=1,2,...,n,

w(x, &,t) = w'(x, &, t) + g ) W(2,€,), A=1,2,...,N, (5.1)

where

UO ('agat)a Ug('7€7t) € S‘/;Sl(QaA)a 0= <>\a60751)7

o

wo('7€7t)7WA('7€7t) S 5%2(Q7A)7 5 = (/\750751a52>a

for every (£,t) € Z x I, summation convention over a and A holds. Functions
u?, wP called averaged (macroscopic) variables (or macrodisplacements) and
functions U2, W4 termed fluctuation (microscopic) amplitudes are the new
unknowns slowly-varying in x € Q).

Finite sums h%(2)U%(z,&,t), a = 1,2,....n and g¢4(x)W4(z,§&,1),
A=1,2,...,N, (z,&1t) € QxEXI, represent oscillations of displacements caused
by a tolerance-periodic microheterogeneous structure of the shell. Integers n, N
determine accuracy of solutions to the initial-boundary value problems under
consideration.

We substitute the right-hand sides of (5.1) into (4.8). The resulting lagrangian
is denoted by Lj,. Averaging lagrangian Ly, over cell A using averaging formula
(3.5) and tolerance averaging approzimation (3.6), we arrive at function (Ly,) being

(5.2)
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the tolerance averaging of lagrangian (4.8) in A under micro-macro decomposition
(5.1). The obtained result has the form

<Lh9> (I, 6ﬁu(o)u u37 62U27 Uga Ug, Ug, aab’wou
’LUO, 822WA, 82WA, WA, wo, WA> =

1
-— {<Daw> Opubdpu) + 2 (D10 ) Ogul U+

+ 2<Daﬁ72ha>aﬁugasz; + <D°‘1”81h“81h”> ULUl+
+ (DR U U + 20! (<D"‘5”> Dpudu’ +

+ <Da11181ha> U)OUg + <DaﬁllgA>aﬁquA + <Da11161hagA>UgWA+

+<D°‘211h“>82Ugw0 4 <Da211hagA>62UgWA) 12 < <D1111> WP+
(5.3)

+2<D11119A>w0WA 4 <D11119AgB>WAWB) X <Bo¢,3’y§> aaﬂwoawwo_l_

42 (<Baﬂ“angf‘> D’ WA + <Baﬁ22gf‘>aaﬁwoagzwf‘+

+<31122gA811gB>822WBWA) + 4<Ba'812819A>8a5w082WA+

+ 4<B1212819A8193>82WA82WB + <B11118119A8119B> WAWB+

+ <B2222gAgB>622WA822WB - <[L> aaﬂﬂgﬂ% - </l> (w0)2 +
— <uhahb>aaﬁUgUﬁb _ <ugAgB>WAWB] + <fa> u2+

+ (SR + () u + (fg* )W,

The underlined terms in (5.3) depend on microstructure length parameter \.
Action functional

L1 Lo t1

Ahg(ug,Ug,wO,WA):///(Lh9>dtd§dx, (5.4)
0 0 to

with (Lp,) given by (5.3), is called the tolerance averaging of action
functional A(u,,w) defined by (4.6) under decomposition (5.1).
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The second step in the tolerance modelling of Fuler-Lagrange equations (4.9)
is to apply the principle of stationary action to Ay, given above.

Under assumption that  9(Ly,)/0ul, (OLng)/Oapw®,  I{Lpg)/0sUL,
O(Lpg) | 0sW A, O{Lyy)/0saW4 are continuous, from the principle of stationary
action applied to Ay, we obtain the following system of Euler-Lagrange equations
for u?, w®, U2, W4 as the basic unknowns

8<th> _ 8<th> 26<Lh9>

Y0 (0u0)  oud, T at 0ul
6<Lh9> 8<th> 28<Lh9>

=0,

_aaﬂa(aaﬁw()) "o Torow0 (55)
28<th> _ 0<th> + 0 8<Lh9> -0 .
ot oUs us " Po(pUe)

28<th> _ 8<th> + 0 8<th> —0 8<th> -0

ot oWwA  OWA T TPa(0,WA) TR0 (0WA) T

Combining (5.5) with (5.3) we arrive finally at the explicit form of the
tolerance model equations under micro-macro decomposition (5.1). We
shall write these equations in the form of

e the constitutive equations

N8 = (DoY) gyl 417! (<Daﬁn> u? ¢ <Daﬂng3>wB) "

+ (Do) U+ (DU o, U1, -

M = (B*0) o sul + ( B2y g% ) W
2<B“’8126193>82WB n <Ba52293>822WB,

&EZ¥3§@@_<JE;§£@%- >0

+ (Rt DP Do) U — (R DPDRY) 9 U+

L (<alhapmn> w — (h D)oyt ¢

+ <81haD6111gB>WB _ <haDﬁ21lgB>82WB) ’
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GA=r! (<gAD“'Y§>a;uE; + (O DG YU

4 <hbD1127 >8 Ub) <gADlnl>w0+

+ <(9 gABHaﬂ> agwo — 2<819ABa612>8ag2w0+

+< ABaﬁ22> a0’ + <<allgABnnaHgB> n (5.600mta)
+ r—2<gADllllgB>) W8 4 (<allgA311229B>+

i <gA311228119B> _ 4<algABl2lzalgB>) Oy W B+

+ <9A3222293>a2222WBa

e and the dynamic equilibrium equations for unknowns u2, w®, U¢, W4 being
slowly-varying functions with respect to x € €}

Do NP = (u)a®iig, + (f7) = 0,

Dop M + 1 N 4 (p)i® — (f) =0,

(uh®h®)a*PUb + H® — (f°h®) =0, a,b=1,2,...,n,
(uggBPYWB + GA — (f¢*y =0, A,B=1,2,...,N.

(5.7)

Equations (5.6) and (5.7) together with micro-macro decomposition (5.1)
and physical reliability conditions (5.2) constitute the tolerance model of selected
dynamic problems for the thin transversally graded shells under consideration.

Discussion of results

The characteristic features of the derived tolerance model are:

e In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the tolerance model equations (5.6) and
(5.7) proposed here have coefficients being continuous and slowly-varying
functions in x, x € ). Moreover, some of them depend on microstructure
length parameter A (underlined terms). Hence, the tolerance model makes it
possible to describe the effect of length scale on the global shell behaviour.
Moreover, we can analyse the length-scale effect not only in dynamic but
also in stationary problems for the transversally graded shells.
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e Macrodisplacements u?, w® are governed by the system of three partial

differential equations (5.7)1 2. The number and form of boundary conditions
for averaged variables ul, w" are the same as in the classical shell
theory governed by equations (4.10). Fluctuation amplitudes U2, W4,
a=1,2,...,n,A=1,2,... N are governed by the system of (2n+N) partial
differential equations (5.7)34. The boundary conditions for U2, W4 should
be defined only on boundaries £ =0, £ = L.

e Decomposition (5.1) and hence also resulting tolerance model equations
(5.6) and (5.7) are uniquely determined by the postulated a priori
tolerance-periodic fluctuations shape functions, h® € FS}(Q, A), h* € O(N),
a=1,2,...,nand g* € FS3(Q,A), ¢* € O(\?), A = 1,2,...,N which
represent oscillations inside a cell. These functions can be obtained as exact
or approximate solutions to certain periodic eigenvalue problems describing
free periodic vibrations of the cell, cf. Tomezyk [133], Jedrysiak [27]. It means
that they represent either the principal modes of free periodic vibrations
of the cell or physically reasonable approximations of these modes. These
functions can also be treated as the shape functions resulting from the
periodic discretization of the cell using for example the finite element method.
The choice of these functions can be also based on the experience or intuition
of the researcher.

e The tolerance models can be formulated on the various levels of accuracy.
This accuracy is determined by numbers n > 1 and N > 1 of terms in
the finite sums h%(2)U%(z, &, t) and g (2)WA(x,&,t), v € Q, (£,t) € = x 1,
respectively, occurring in micro-macro decomposition (5.1) and representing
micro-fluctuations of displacements caused by a tolerance-periodic structure
of the shells under consideration. By increasing the number of n and N we
can obtain more detailed descriptions of the investigated problems. However,
in the most cases, restriction of considerations to the first terms in series
heU2 and ¢g"W4, a = 1,2,...,n, A = 1,2,...,N, ie. for a = n = 1,
A = N =1, is sufficient from the calculative point of view, cf. Tomczyk [133],
Jedrysiak [27], where some special dynamic problems of thin micro-periodic
cylindrical shells [133] and plates [27] are investigated in the framework of
the tolerance models. Note, that the micro-periodic shells are special cases
of the tolerance-periodic shells considered in this dissertation.

e The resulting equations involve terms with time and spatial derivatives
of the fluctuation amplitudes. Hence, these equations describe certain
time-boundary-layer and space-boundary-layer phenomena strictly related to
the specific form of initial and boundary conditions imposed on unknown
fluctuation amplitudes U?, W4, a =1,2,...n, A=1,2,...,N.
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e It has to be emphasized that solutions to selected initial/boundary value
problems formulated in the framework of the tolerance model have a physical
sense only if conditions (5.2) hold for the pertinent tolerance parameters ¢,
i.e. if unknown macrodisplacements v, w® and fluctuation amplitudes U2,
W4 of the tolerance model equations are slowly-varying functions in the
tolerant periodicity direction. These conditions can be also used for the a
posteriori evaluation of tolerance parameters § and hence, for the verification
of the physical reliability of the obtained solutions.

e For a homogeneous shell with a constant thickness, D*%(z),
B (z), u(z), = €, are constant and because (uh®) = (ug?) =0,
a=1,2,...,n, A=1,2,..,N, we obtain (h%) = (g?) =0, and hence
(01h%) = (D19) = (D119) = 0. In this case equations (5.7); 2 reduce to the
well known shell equations of motion for averaged displacements u? (x, &, ),
w’(z,&,t) and independently for fluctuation amplitudes U%(z,¢&,t),
WA(z,&,t) we arrive at the system of equations, which under condition
(fPhe) = (fg”) = 0 and under homogeneous initial conditions for U¢ and
W4, has only trivial solution U¢ = W# = 0. Hence, from decomposition

(5.1) it follows that u, = v, w = w". It means that equations (5.6), (5.7)

generated by tolerance-averaged Lagrange function (5.3) reduce to the

starting equations (4.10) generated by Lagrange function (4.8).

e The tolerance model equations presented here are more general than those
formulated and discussed in Tomczyk and Szczerba [146], because they are
derived without the extra assumption 1 + A/r ~ 1, where A and r stand
respectively for the microstructure length parameter and the midsurface
curvature radius. It means that in the model equations presented here the
terms of an order O(A/r) are not neglected.

5.2. Consistent asymptotic model

In this subsection a new mathematical averaged asymptotic model for the analysis
of selected dynamic problems for thin cylindrical shells with a tolerance-periodic
microstructure and a functionally (transversally) graded macrostructure in the
circumferential direction will be formulated applying the consistent asymptotic
procedure proposed in Wozniak et al. (eds.) [164].

On passing from the tolerance averaging to the asymptotic averaging, we retain
only the concepts of fluctuation shape functions and averaging operation. The
notions of slowly-varying and tolerance-periodic functions will not be introduced.

Asymptotic modelling procedure for Euler-Lagrange equations (4.9) is realized
in two steps.
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The first step is the consistent asymptotic averaging of lagrangian L
defined by (4.8). To this end we shall restrict considerations to displacement
fields uq = uqy (2, 2,€,t), w=w(x,2,&1t) defined in A(z) xE X1, z€ Az),
x € Qa, (§,t) € = x 1. Then, we replace u, (z,z,¢,t), w(z,2,§,t) by families
of displacements u., (z,2,£,t) = u, (x,z/é,f,t), we (z,2,6,1) = w (ac,z/&?,f,t),
where € € (0,1], z € A(z), A. = (—eA/2,e0/2) (scaled cell), A(z) = x + A,
x € Qa, (scaled cell with a centre at x € Qa_), Qa. ={z € Q: A (z) C Q}.

We introduce the consistent asymptotic decomposition of families of
displacements u.(z, z,&,t), w.(z, 2,€, 1), (2,§,t) € Ac x 2 X1, 2 € Qa,

Uea (1, 2,6,1) = ua(@, 2/, 6, 1) = W02, &, 1) + ehl(w, 2)U%(2, &, 1),

a=12,...,n,
0 2~A A (5.8)
we(x, 2,6, t) = w(x, z/e, €,t) = w (2,6, t) + g2 (z, 2) W (2, &, 1),
A=1,2,... N,

where summation convention over a and A holds.

Unknown functions u?, U® in (5.8) are assumed to be continuous and bounded
in ) together with their first derivatives.

Unknown functions w®, W4 in (5.8) are assumed to be continuous and bounded
in 2 together with their derivatives up to the second order.

As in the tolerance modelling, functions u?, w® and U2, W4 are called
respectively macrodisplacements and fluctuation amplitudes. We recall that they
are not referred to the slowly-varying functions introduced in the tolerance
averaging. Moreover, u®, U¢, w®, W4 are assumed to be independent of . This
is the main difference between the asymptotic approach under consideration and
approach which is used in the known homogenization theory, cf. Bensoussan et al.

19]; Jikov et al. |42].

By Eg(m, 2) = ho(z, z/e) and 9N, 2) = g, 2/e), z € A(x), 2 €Qa, in
(5.8) are denoted periodic approximations of highly oscillating fluctuation
shape functions h* € FS}HQ,A) and g4 € FS2(Q, A) in A.(z). The fluctuation
shape functions are assumed to be known in every problem under
consideration. They have to satisfy conditions: h? € O(e)), AJ1h? € O(e)),
g € O((eN?), Adhg € O((EN?), Nl € O((N?), (uht) = (g = 0 and
<,uhgh15’> = <ug§‘gEB> =0 for a # b, A # B.

Taking into account that h%(z,z) = ho(z,z/e), Gz, 2) = §A(x, 2/e)
and  setting 0y h%(z,2) = e Oh(x,z/e),  OGA(x,2) = et 01gM(x, 2/e),
Ongi(z,z) =72 0ngi(x, z/e), z € A(x), z € Qa,, from (5.8) we obtain
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Uea(T, 2, €, 1) = Ul (2,6, 1) + eh” (2, 2/e)US (2,6, 1) = ud (2,6, 1) + O(e),
Ontiea(, 2, €, 1) = D1l (2, &, 1) + DRz, 2/e) Ul (2, €, 1)+
+ eh®(x, 2/e)h Uz, &, 1) = Ol (2, &, 1)+
+ 817za(x, z2/e)US(z,&,t) + O(e),
Oolca (1,2, &, 1) = Ooul (2,€,1) + Sﬁa(ac, 2[e)UL(2,€,t) =
— 0 (,£,1) + Oe),
liea (7, 2, €,1) = 00(2,, 1) + eh(x, 2/e)Ul (2,6, t) = 02(2,€, 1) + O(e),
we (w2, &, 1) = w2, &, t) + 2% (x, 2/e)WA(2, &, 1) = (2, &, 1) + O(e?),
Owe(, 2,&,t) = 01w’ (2,€,t) + e g (w, 2/e) WA (2, &, 1)+
+ %Mz, 2 /)W A (2, €, 1) = D1u’ (2, &, 1) + O(e) + O(£?),
Onwe(w, 2,6, 1) = I’ (2,6,1) + g (v, 2/ )W (2, €, )+ (5.9)
+ 26019 (, 2/e)WA(2, &, 1) + 29z, 2 /)0 WA (2, €, 1) =
= 01 (2, €,8) + O (1, 2/2)WA(2, £,8) + Oe) + O(=2),
Opw(z,2,€,1) = Opw.(z, 2,6, 1) = 01w’ (2, &, 1)+
+ e gz, 2/) WA (2,6, 1) + 25Nz, 2/) D1 WA (2, €, 1) =
= D1’ (2,&,t) + O(e) + O(e?),
Dowe(x, 2,6, 1) = Ow’(2, &, 1) 4+ 29z, 2 /). W (2, €, 1) =
= 0ou'(2,6,1) + O(e?),
Opowe(, 2, €, 1) = Do (2, &, 1) + €2 (2, 2/€) D W (2, €, 1) =
= O (2,&,t) + O(£7),
We(, 2, €, 1) = (2, &, 1) + 2% (w, 2/e) WA (2, &, t) = (2, &, t) + O(e?),
z€ Ax), €A, (&t)e=ZxL
Due to the fact that lagrangian L defined by (4.8) is highly
oscillating with respect to w, there exists for every x € €a lagrangian
L (m,z,f,t,ﬁﬁumua,ua,&ww,w,w) which constitutes a periodic approximation

of lagrangian L in A(z), z € A(z), x € Qa. Let L. be a family of functions given
by

Ls =L (xaz/ga’fataaﬁusaausaausaaaaﬁwsawsawz-:) =

11~ ~ _
=3 [Daﬁﬁ’é@ﬂuw&;um + 2T_1Da611w€agum +r 2 DM (w, )2+ (5.10)

+Baﬁ758aﬁwsaw5ws - ﬁaaﬂueausﬁ - ﬁ(w€)2] + fauaa + fw€7
where 130‘575, EO‘M‘S, [ are periodic approximation of D9 B% 1 respectively.
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Substituting the right-hand sides of (5.9) into (5.10) and taking into account
that under limit passage ¢ — 0 for z € A.(z), terms O(¢), O(e?) (i.e. terms
depending on ¢ and &2?) can be neglected as well as bearing in mind that if
e — 0 then every continuous and bounded function p(z,¢,t), z € A (x), z € Qa_,
(¢,t) € Z x I, tends to function p(z,&,t), z € Q, (£,t) € Z x I, we arrive at

L.=L (x z/e, & t,00ul (2, &, t) +617ﬂ(:c 2/e)U%(x, &, 1), Oul (x, €, 1),
ul (z,&,1), 00 (x, &, 1), 0w’ (x, &, t) + 011G (@, 2 /)W (x, €, 1), (5.11)
Drau”(z, €, ), 00110 (2,6, 1), Dopte” (2, €, 1), 0 (2, €,1), 0 (2, £,1)).

Moreover, if & — 0 then, by means of a property of the mean
value, cf. Jikov et al. [42] the obtained result tends weakly to
Ly (.73 dgud, ud, U2, 00, Oapuw®, w, W4, u0), where

o) a) a? CM7

LO - <Z <£L’, Z>£7t7alug($7€7t> + alﬁa(wa Z)Ug(%f»t)y@ug(%fat)aUg(%fat),
ug@f? £7 t)? 811’(1)0(33, 57 t) + 811§A<x7 Z)WA(IU, £7 t)? 81211)0(1', f? t)?
821w0(x,§,t),822w0(:c,£,t),w0(x,£,t),wo(x,f,t))>.

The explicit form of Ly is given by

LO <ZL‘ aﬁ“a?“angvuaaaaﬁw U} WA ' >_
1

=—3 [<D°‘575> (%ug&;ug +2 <Da67151ha

) o
+ (DO Y ULUL + 2 (<D°‘B“> Dyudu’+

+

<D0‘1“81h“>w0Ug) (DMLY () 4 (5.12)
<Baﬁ75> D18, 50 + 2 <Baﬁﬂa11 gA> s W A+

+ (B0 g 0ng” ) WAWE — (n) aillil+

— () (6°)°] + (ryud + (),

where averages (-) on the right-hand side of (5.12) are continuous and
slowly-varying in = and calculated by means of (3.5).

Function Lg, given above, is the averaged form of lagrangian L defined
by (4.8) under consistent asymptotic averaging. We recall that concept of
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Ly was introduced without any reference to the concept of slowly-varying and
tolerance-periodic functions.

In the framework of consistent asymptotic modelling we introduce the
consistent asymptotic action functional defined by

L1 Lo t1
A9 (ug, Ug,wo,WA) - / / / Lodtdedz, (5.13)
0 0 to
where Ly is given by (5.12).

Under assumption that 9Lg/0sul, OLg/Jasw’ are continuous, from the
principle of stationary action applied to (5.13), we obtain the following system
of Euler-Lagrange equations

JLy 0Ly 0 0Ly

0p — + =
0 ((%ug) oud Ot E)uo
0Ly 0Ly 0 0Ly

:O,

— Dup - =2 =0,
8 (Do) 0w ' Ot QU (5.14)
OLo _ 4 a=1,2
0Ug - Y a=1,4,..., N,
OLg
=0, A=12...,N.
GWA ’ ’ < )

Combining (5.14) with (5.12) we arrive at the explicit form of the consistent
asymptotic model equations for ul(x,&.t), w'(x, & 1), Uz, &, t), WA, &),
reQ, ({t)e=xI1

95 <<D°‘575> Dsul + 1! <D°‘5“> wo) + <Daﬁﬂalhb> DU+

— () @il + () = 0

O (<Baﬁvé> 0. 5u° + <Daﬁﬂangf‘> WB> . <D1”5> Dsul+
72 (DM w4t (DO ) UR + () i — () =0,

(ah* DRV UL = — (9 D) 0l — 7 (O DV )
("B 09" ) W = = (019" B™%) D50,
a,b=1,2,...,n, A, B=1,2,... N.

(5.15)

Equations (5.15) consist of three partial differential equations for
macrodisplacements v, w® coupled with (2n + N) linear algebraic equations for
fluctuation amplitudes U2, W4,
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It can be shown that linear transformations G, E given by
Gab <8 he D19, hb> EAB — <0 1gA B, 1gB> respectively, are invertible.
Hence solutions U, b W4 to equations (5.15): 3.4 can be written in the form

Y

e (L RS Y E L A
WA _ (Eil)AB <811gB31175> 87511}0,

where G~ and E~! are the inverses of the linear transformations G, E respectively.
Substituting (5.16) into (5.15); 2 and setting

D = (Dot — (pettoye ) (G (DIt

B = <Baﬂw5> _ <Baﬁllang,4> (B <(f9ngBBHV‘5>7 (5.17)

we arrive finally at the following form of Euler-Lagrange equations for u2(z, &, 1),
("'E7§7t)7 X 6 Q? (§7t> 6 : >< :[’

0 (D70 + 7 D ) = (1) @iy + (%) = 0, 1
5.18
Oap (B;‘B"’éﬁmgw ) +7r IDIM‘;E) Uy + 7 2D MY+ ()@ — (f) = 0.

Since functions u,(z,§,t), w(z, £, t) have to be uniquely defined in  x = x I,
we conclude that us(z, &, t), w(z, &, t) have to take the form

U, &, 1) = ud (2, &, 1) + h(2)Ul(z, &, 1),

Wl 6t) = (w60 + AW ED), seREnesxl
with U2, W4 given by (5.16). Contrary to (5.1), the above formula is not a
micro-macro decomposition since in the consistent asymptotic approach it is
not assumed that functions u?, w®, U2 W4 are slowly-varying. Tensors D,O:ﬁ "
B;xﬁwé given by (5.17) are tensors of eﬁectwe elastic moduli for the shells under
consideration.

Equations (5.18) for macrodisplacements u®, w" together with formula (5.19)
and with expressions (5.16) for fluctuation amplitudes U2, W4 represent the
consistent asymptotic model of selected dynamic problems for the thin
transversally graded cylindrical shells under consideration.
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Discussion of results

The characteristic features of the derived consistent asymptotic model are:

e In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the asymptotic model equations (5.18)
proposed here have continuously slowly-varying coefficients.

Contrary to tolerance model equations (5.6) and (5.7), the asymptotic model
1s not able to describe the length-scale effect on the overall shell dynamics
being independent of microstructure cell size .

The number and form of boundary/initial conditions for unknowns u?, w®°

are the same as in the classical shell theory governed by equations (4.10).

The extra unknown functions called fluctuation amplitudes U2, W4 are
governed by the system of (2n + N) linear algebraic equations (5.15)3 4 and
can be always eliminated from the system of governing equations (5.15) by
means of (5.16). Hence, the unknowns of final asymptotic model equations
(5.18) are only macrodisplacements u?, w®.

The resulting asymptotic equations (5.18) are uniquely determined
by the postulated a priori tolerance-periodic fluctuations shape
functions, h* € FS}HQ,A), h* € O(\), a=1,2,...,n and g € FS2(Q,A),
gt € O(\?), A=1,2,..., N representing oscillations inside a cell. These
functions can be obtained as exact or approximate solutions to certain
periodic eigenvalue problems describing free periodic vibrations of the cell.
These functions can also be derived by means of the periodic discretization
of the cell using for example the finite element method. The choice of these
functions can be also based on the experience or intuition of the researcher.

If the fluctuation shape functions are not derived as solutions to certain
periodic eigenvalue problems describing free periodic vibrations of the cell
then the effective moduli (5.17) of the shell are obtained without
specification of the periodic cell problems. This situation is different
from that occurring in the known asymptotic homogenisation approach, cf.
e.g. Bensoussan et al. [9], where only solutions to the periodic cell
problems make it possible to define the effective moduli of the
structure under consideration

For a homogeneous shell with a constant thickness, D*(x), B (x), u(x)
are constant and because (uh®) = (ug™*) = 0, we obtain (h*) = (g*) = 0, and
hence (01h%) = (9,9”) = (0119') = 0. In this case we obtain from (5.16) that
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U = WA =0 and from (5.17) that D = Dosd, Ba# = BoF°. Thus,
from decomposition (5.19) it follows that u, = u2, w = w°. It means that
equations (5.18) generated by asymptotically averaged Lagrange function
(5.12) reduce to the starting equations (4.10) generated by Lagrange function
(4.8).

e It may also be noticed that from the formal point of view, asymptotic model
equations (5.18) can be obtained directly from tolerance model equations
(5.6) and (5.7) by the formal limit passage A — 0, i.e. after neglecting terms
depending on microstructure length parameter A (underlined terms).

5.3. Combined asymptotic-tolerance model

In this subsection a new mathematical averaged asymptotic-tolerance model
for the analysis of selected dynamic problems for thin cylindrical shells
with a tolerance-periodic microstructure and a functionally (transversally)
graded macrostructure in the circumferential direction will be formulated by
applying the combined modelling proposed in Wozniak et al. (eds.) [164]. This
combined modelling includes both the consistent asymptotic and the tolerance
non-asymptotic modelling techniques which are combined together into a new
procedure.
The combined modelling technique is realized in two steps.

Step 1. Consistent asymptotic modelling

The first step is based on the consistent asymptotic procedure which leads
from starting equations (4.9) with highly oscillating and discontinuous coefficients
to the Euler-Lagrange equations with continuous and slowly-varying coefficients
independent of the microstructure cell size. Hence the model obtained in the
first step is referred to as the macroscopic model. This consistent asymptotic
(macroscopic) model has been formulated in Subsection 5.2 and consists of
equations (5.18) and decomposition (5.19) in which the fluctuation amplitudes
are given by (5.16).

In the subsequent considerations, external forces f¢, f will be neglected.

Below, we rewrite equations (5.18) of the consistent asymptotic
(macroscopic) model without the external forces

05 (D267585u2 + r_lDzﬁllw()) — () a"‘ﬁug =0
(5.20)
Oup <Bg°‘57‘5875w0> + r_lD,lllw&;ug + T_QD}meO + () W’ = 0.
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In the first step of combined modelling it is assumed that functions u2, w°

obtained as solution to a certain boundary-initial value problem for consistent
asymptotic equations (5.20) are known. Hence, there are also known functions

an(xvga t) = ug($7£7t) + ha('x)Ug(xvg)t)v
wo(z, &, 1) = w'(x, &, 1) + g (x)W(x, &, 1), (5.21)
reQ, (t)e=xI, a=1,2,...,n, A=12,... N,

where U2, W4 are given by means of (5.16).

Step 2. Tolerance modelling

The second step of the combined modelling will be realized by means of the
tolerance (non-asymptotic) modelling procedure.

In the second step we introduce the mew tolerance-periodic in x € £,
continuous and highly-oscillating fluctuation shape functions: c& € FS}(Q, A),
k= 1,2,....m, b¥ € FS3(Q,A), K = 1,2,...,M, such that & € O()),
A@lck S O()\), bE € O(/\Q)7 /\8le S O()\Q), )\2811bK S O(/\2)7 <,uc’“> = <p,bK> =0
and (uckc) = (ubXbY) = 0 for k # |, K # L, where p(x) is the shell mass
density being a tolerance-periodic function with respect to x. These functions are
assumed to be known in every problem under consideration. Taking into account
that inside the cell the geometrical, elastic and inertial properties of the shells
under consideration are described by symmetric (i.e. even) functions of argument
z € A(z) (the cell has a symmetry axis for z = 0), we assume that periodic
approximations ¢*(z,z) and b (z,z2) of (z) and b5 (z) in A(z), € Qa, are
either even or odd functions with respect to z.

Let functions Qf(z,&,t), k = 1,2,...,m and VE(z,&t), K = 1,2,..., M,
(x,&,t) € QX E X1, be the new unknowns called fluctuation (microscopic)
amplitudes, which are slowly-varying in z, Q% € SV (Q, A), VE € SVZ(Q, A).

We shall introduce the extra micro-macro decomposition superimposed
on the known solutions up, € TP§(Q,A), wy € TP, A) obtained within the
macroscopic model

uca<x7§7t) - an(x7§7t) + Ck(:L‘)Qi({L‘,f,t),
wb(x7§7 t) = wo(l’,f, t) + bK(x>VK<x7§7 t)7 (522)
reQ, (t)ye=Exl, k=12...,m, K=12,...,M,

where summation convention over k£ and K holds and where u., € TP} (Q,A),

w, € TPQ,A). Formula (5.22) will be also referred to as decomposition
superimposed on the first step of combined modelling.
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Due to the fact that w.(-,&,t) € TPH(QA), wy(-,&,t) € TPHQ,A) are
tolerance-periodic functions, there exist periodic approximations of these functions
and of their pertinent derivatives in every A(z), x € Qa. Bearing in mind
the properties of the slowly-varying functions and fluctuation shape functions
and taking into account that wg.(x,&,t) and wo(x,&,t) given by (5.21) are
tolerance-periodic functions in z, i.e. ug, € TP} (Q, A), wy € TPZ(Q, A), we arrive
at the following results in A(z) x = x |

Uea(T, 2, €, 1) = Uga (2, 2, €, 1) + (2, 2)QF (2, £, 1),
e (1, 2, &, 1) = Oiliga (2, 2, &, 1) + 01 (2, 2)QF (, &, 1) (5.23)
Dol (2, 2, &, 1) = Oaliga (T, 2, &, 1) + T (2, 2)02Q (, €, 1) '
U, 2, €, 1) = Tpa(z, 2, &, 1) + (x, 2)QF (x, €, 1),
and

wy(z, 2,&,t) = wo(x, 2,&,t) +5K(x, )VE(x,€1),

a1’[1\]/12(:[‘7 Z?&at) = 81{170(1'7 2757 t) + ang(xa Z)VK<$,f,t),

Aty (x, 2, £, 1) = Oy (x, 2, &, 1) + 010X (z, 2)VE (2, €, 1),

812117{,<I, Z, g,t) = 82171)},(1’, Z7£,t) = 812{170(1', Z,f,t)-F (5 24)

+ 005 (2, 2)0V K (2, €, 1),
Opty(z, 2, &, 1) = Dawp(x, 2,&, 1) —i—bK(x 2)0VE (x,€,1),
OoaWy (1, 2, &, 1) = Banilg(, 2, £, 1) + b (2, 2) D0V E (2, €, 1),
ﬁb(a:,z,f,t) = ﬁo(x,z,f,t) +EK(m, )VE(z,€,1),

where z € A(z), z € Qa, ({,1) € ExIand Ok (x, 2), 0,65 (x, 2), 9110 (z, ) stand
for derivatives of ¢®(-) and b’ (-) with respect to z € A(z). Obviously, in terms

O1Uoa(z,2,€,1) = 01 (ug(x,é,t) —1—%“(:1:, z)US(:c,ﬁ,t)) ,

81w0(x727£7t> = 01 (U)O(.Q?,f,t) +§A<x7Z)WA($7§7t)> )

811’&70(377'27£7t> = a11 (wo(x,f,t) + gA(m’ Z)WA(x7§7t)> )

we deal with derivatives of 4%, w® with respect to z € Q and with derivatives of
he, G with respect to z € A(z).

Setting u., = uq, wp, = w and after neglecting the external forces we obtain
from (4.8) lagrangian Lu,(x, &, t, O5Ucas Uca, OapWp, Wp, Wp), € Q, (£,1) € Z x 1,
having the following form
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Ly =— % <D“'87685uca85uw + %Daﬂ”wbaﬁuca + %Dllllwbwb—l—
(5.25)
+ Baﬁwaa,@wbawwb — uaaﬁucaucﬁ — (u')b)2 >
Action functional A(uw,w,) determined by L, is defined by
Li Ly ty
A(Uen, wp) = ///ch(a:, &, 1, 08Uca, Uea s OapWsy, Wy, Wy)dtdEd. (5.26)
0 0 o

Since lagrangian L, is highly oscillating with respect to x then there exists a
periodic approximation L (x, 2, &, t, 05lca; Uea, OapWp, Wp, Wy), 2 € A(z), € Qa,
(&,t) € Q x 1, of Ly in every A(z). Substituting the right hand sides of
approximations (5.23), (5.24) into this lagrangian as well as substituting into L
the periodic approximations Eaﬁwé(x, z), EO‘BV‘S(x, z), fi(x, z) of tolerance-periodic
functions D8 Be8¥ (1) € TPYQ,A) and averaging Le over cell A(x)
using tolerance averaging formula (3.5) and tolerance averaging approximation
(3.6), we arrive at function (L) being the tolerance averaging of lagrangian
Lep(x,€,t, 0ptlcn, Ueas OapWs, Wy, Wy) in A(x) under micro-macro decomposition
(5.22). Introducing the extra approximation 1 + A/r &~ 1, where r is the
midsurface curvature radius, as well as recalling that ug,(-, &, t) € TP (2, A) and
wo(+,&,t) € TP, A) in (5.22) are known, the obtained result has the form

<ch> <LE,82 Zu IOCU '27822vK’a2vK’VK’VK) =
1

=3 {<Daﬁw585u0a85u0«,> +2 <Damlalckaﬂ1¢0a> Q5+

+ <D°‘11"’810k81cl> Q@Qla + <Da2270k0l>62Ql782Qi+
+2r7! (<Da51105u0awo> + <D°‘111010kwo> Q’;) +
+r2 <D1111w0w0> + <Ba’6753aﬁwo&yawo> + (5.27)

+2 (<Ba511811bK8a5w0> VE 4 <Ba5226K3a5w0>822VK+

+ <B”22bK8116L>822VLVK) + 4{ BI20,bR 00" ),V E BV

+ <BHH@11bK811bL> VEYL 4 <B2222beL>622VK822VL+
— <,uaa6110au05> — <,u (w0)2> — <uckcl>a°‘ﬁQZQlﬁ — <ubeL>VKVL} )
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The underlined terms in (5.27) depend on microstructure length parameter .
Action functional

L1 Lo t1
A (QF VK / / / o) dtdéd, (5.28)

where (L) is given by (5.27), is called the tolerance averaging of action
functional A(u.q,ws) defined by (5.26) under superimposed decomposition
(5.22).

The principle of stationary action applied to A, given above leads to the
following system of equations for Q! , VX

O L) Lo} o O(La)
ot ok QL 0 (0.Qb)
ot OV K aVK Qa(aQVK) 20 (9, VE)

=0,
(5.29)

Combining (5.29) with (5.27) we obtain finally the explicit form of the
Euler-Lagrange equations

<Da22‘5ckcl> D0a Q% — <D°‘11‘$810k8101> Q5 — <uc cl>aa6Qlﬁ =

=t <Da111(91ckwo> + <Da571(910kaﬁu0v> ;o kil=1,2,...,m,

<BZQ22beL>82222VL I [<31122bK811bL> X <31122bL811bK>+

4<3121281bK81bL>} O VL + <B1111811bK811bL> Vi </~LbeL>VL _

_ <BaﬂﬂaubKaaﬂw0> K, L=1,2... M.

(5.31)

Equations (5.30) and (5.31) together with the micro-macro decomposition
(5.22) constitute the superimposed microscopic model (i.e. microscopic model
imposed on the macroscopic model obtained in the first step of combined
modelling). Coefficients of the derived model equations are continuous and
slowly-varying in x and some of them depend on a cell size X\ (underlined terms).
The right-hand sides of (5.30) and (5.31) are known under assumption that wug,,
wo were determined in the first step of modelling. The basic unknowns QF,
VE of the model equations must be the slowly-varying functions in the tolerant
periodicity direction. The boundary conditions for Q*, VX should be defined
only on boundaries ¢ = 0, & = L. Let us observe that in the problem under
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consideration we have obtained system of governing equations which consists of
two independent subsystems. The first from them is the system of 2m equations
for fluctuation amplitudes Q¥, cf. (5.30), whereas the second one is the system of
M equations for fluctuation amplitudes V| cf. (5.31).

Equations (5.30), (5.31) have to be considered together with decomposition

Ua (2, &, 1) = ug(x,€,1) + h*(2)Us(, &, ) + ¢ (2) Q4 (2, €, 1),

w(z,&,t) = w’(z, &) + g ()W (2, &, 1) + b5 (2)VE (2, £, 1),
reQ, (&t)yeEx], a=1,2,...,n, k=1,2,...,m,
A=1,2..... N, K=12.. M,

(5.32)

where functions u2, U2, w®, W4 have to be obtained in the first step of combined
modelling, i.e. in the framework of the consistent asymptotic modelling.

Combined asymptotic-tolerance model equations

Summarizing results obtained in Step 1 and Step 2 we conclude that
the combined asymptotic-tolerance model of selected dynamic problems for the
tolerance-periodic shells under consideration derived here is represented by

e macroscopic model defined by equations (5.20) for macrodisplacements u?,
w® with expressions (5.16) for fluctuation amplitudes U2, W4, a = 1,2,...,n,
A = 1,2,...,N, obtained by means of the consistent asymptotic
modelling and being independent of the microstructure length; it is assumed
that in the framework of this model the solutions (5.22) to the problem under
consideration are known,

e superimposed microscopic model equations (5.30), (5.31) derived by means
of the tolerance (non-asymptotic) modelling, some coefficients of these
equations (underlined terms) depend on the microstructure length parameter

A,
e decomposition (5.32).

Coefficients of all equations derived in the framework of combined modelling
are continuous and slowly-varying in x € ) in contrast to coefficients in starting
equations (4.10), which are discontinuous, highly oscillating and tolerance-periodic.
Moreover, some of them depend on a cell size A (underlined terms).

Superimposed microscopic model equations independent of solutions
obtained in the framework of macroscopic (asymptotic) model

Now, let us discuss an important modification of equations (5.30), (5.31). Let
us assume n = m, N = M and replace fluctuation shape functions c*(-), b% ()
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n (5.30), (5.31) by fluctuation shape functions h%(-), a = 1,2,...,n, g*(-),
A=1,2,...,N, respectively. By means of the consistent asymptotic modelling
we obtain

(D0, h g, ) + 17 (D) = (D10 ) Dgul+
+ (DR ) UL 47 (DO A w = 0,
<B°‘511811gA8a5w > <Baﬁ“a N >aaﬁw0+ (5.33)
+ <Blmaugf‘ang >WB —0,
a.b=1,2...,n, AB=12. N

From comparison of (5.33); with (5.30) and (5.33), with (5.31) it follows that
the right-hand sides of equations (5.30), (5.31) are equal to zero. Moreover, taking
into account a symmetric form of tensor D" we arrive finally to the following
equations for unknown fluctuation amplitudes Q°(z,&,t), Q5(z, &, 1), VE(x, &, 1),
(x,&,t) € A x = x 1,

<D1221hahb>822Qll; _ <D”1181h“31hb> Ql{ _ <Mhahb>Ql{ —0,

(5.34)
a,b=1,2,...,n,
<D2222hahb>622Qg _ <D211281haalhb> Qb — <uhahb>Qg —0, 55
a,b=1,2,...,n,
<322229AgB>82222VB n (<31122gAallgB> n <311229B611g‘4>+
—4<31212819A819B>> 0V + (B 09"0119" ) VI (5.36)

+<pgAgB>VB =0, A B=12,... N.

Equations (5.34)-(5.36) are independent of solutions ug,, wp, obtained in the
framework of the macroscopic model and hence describe selected problems
of the shell micro-dynamics (e.g. the free micro-vibrations, propagation of
waves related to the micro-fluctuation amplitudes) independently of the shell
macro-dynamsics. Moreover, in the problem considered here, the micro-dynamic
behaviour of the shells in the axial, circumferential and normal directions can be
analysed independently of each other.
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Discussion of results

The characteristic features of the proposed combined asymptotic-tolerance
model for the analysis of selected dynamzic problems for thin cylindrical
shells with a tolerance-periodic microstructure and a transversally
graded macrostructure in the circumferential direction are:

e The combined model equations consist of macroscopic model equations
(5.20) formulated by means of the consistent asymptotic procedure which
are combined with superimposed microscopic model equations (5.30), (5.31)
derived by applying the tolerance modelling technique and under assumption
that in the framework of the macroscopic model the solutions (5.22) to the
problem under consideration are known.

e In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the combined model equations proposed
here have continuous and slowly-varying coefficients. Moreover,
some coefficients of the superimposed microscopic model equations
depend on a cell size \. Thus, the combined model can be applied to the
analysis of many phenomena caused by the length-scale effect.

e The resulting combined model equations are uniquely determined by the
highly oscillating tolerance-periodic fluctuation shape functions, which
have to be known in every problem under consideration. In general
case, the fluctuation shape functions of both the macroscopic and the
microscopic models are different. Under assumption that the fluctuation
shape functions of both the models coincide, we have derived superimposed
microscopic model equations (5.34)-(5.36) which are independent of the
solutions obtained in the framework of the macroscopic model. Taking
into account this result we can conclude that an important advantage
of the combined model is that it makes it possible to separate
the macroscopic description of some special problems from their
microscopic description. It means that in the framework of the combined
model we can study micro-dynamics of periodic shells under consideration
independently of their macro-dynamics.

e It can be shown that equations (5.34)-(5.36) also describe certain
near-initial and near-boundary phenomena strictly related to the
specific form of initial conditions and boundary conditions on €2 x 0=, where
= = (0, Ls). That is why, equations (5.34)-(5.36) are referred to as the
boundary layer equations, where the term "boundary" is related both to
time and space.
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e Applying the tolerance modelling directly to the decomposition (5.32) we also
obtain the system of equations for v2, w®, U% QF W4, VE. However, this
system is much more complicated than the system obtained in the framework
of the combined modelling.
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6. Selected problems of dynamics:
Application of the tolerance and
asymptotic models

6.1. Introduction

In all dynamic problems investigated in Section 6 and also in the subsequent
Section 7, the object of considerations is a thin cylindrical shell with Ly, Lo, r, d as
its circumferential length, axial length, midsurface curvature radius and constant
thickness, respectively. The shell has a functionally graded macrostructure and
a tolerance-periodic microstructure along circumferential direction as well as a
constant structure in the axial direction. On the microscopic level, the shell is
made of two elastic isotropic materials, which are perfectly bonded on interfaces
and tolerance-periodically distributed along x-coordinate. Such a shell is shown in
Fig. 4.1 and reminded in Fig. 6.1.

The basic cell A shown in Fig. 6.2 and cell A(z) with the centre at point
x € Qp are defined by (4.1). Below we recall the definitions

A=[-N/2,)/2],
Alz)=z+A=[z—)N2,z+)/2], (6.1)
r€Qa, Qa={reQ:A(x)C},

where ) is a cell length dimension in = z!-direction, cf. Figs. 6.1 and 6.2. The
microstructure length parameter \ satisfies conditions: \/max(d) > 1, \/r < 1
and \/L; < 1. Setting z € [—\/2, /2], we assume that the cell A has a symmetry
axis for z = 0. Inside the cell the geometrical, elastic and inertial properties of the
shell are described by symmetric (i.e. even) functions of argument z. At the same
time, these functions are independent of argument & = 2.
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Figure 6.1: Fragment of the shell made of tolerance-periodically distributed two component
materials a) the microscopic point of view b) the macroscopic point of view

Properties of the component materials are described by: Young’s moduli
Ei, E,, Poisson’s ratios vy, 15 and mass densities p;, po, cf. Fig. 6.2. It is
assumed that elastic E(x) and inertial p(z) properties of the composite shell are
tolerance-periodic functions in z, x € Q, i.e. E, p € TP2(Q, A), but Poisson’s ratio
v = 1, = 1y is constant. Inside the cell, periodic approximations £ (x,2), plx, 2),
xr € Ax), © € Qa of functions E(-), p(-) take the form
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~ ~ ) Ey,py for z e (—n(x)N/2,n(x)N\/2),
E(2),p(2) = { By e for = ¢ %—Z/Q,—ﬁ(g))\/ﬂ u) G2z, 62

where 77(x) € [0,1] is a periodic approximation of function n(z) € [0, 1] describing
distribution of material properties, cf. Fig. 6.2.

The rigidities DY(x), B*(z), x € Q, D% B ¢ TPY(Q,A), of
the shell are described by: D®(z) = D(x)H*° B (z) = B(x)H,
where D(z) = E(z)d/(1 —v?), B(z)= E(x)d®/(12(1 —v?)) and the nonzero
components of tensor H® are: H'W = {2222 =1 HU22 = g2l —
H212 = 122t — 2121 = 212 — (1 — 1) /2. Periodic approximations of these
rigidities in the cell take the form: D*(z,z) = E(z,z2) d (1 — v2)"LH*¥,
B9 (1, 2) = E(x,2) d® (12(1 — v2)) L H*PY | 2 € A(x), © € Qa, where E(z, 2) is
given by (6.2).

The shell mass density p(z) per midsurface unit area and its periodic
approximation fi(z, z) in the cell are given by u(x) = p(z)d and p(z, 2) = p(z, 2)d,
respectively, where p(z, z) is given by (6.2).

The symmetry axis of the cell

Figure 6.2: Basic cell A = [—)A/2,A/2] of the tolerance-periodic shell

The considerations will be restricted to the simplest forms of the tolerance,
asymptotic and asymptotic-tolerance models in which a=n=A=N =1.
It means that we will take into account only one fluctuation shape
function h(x) = h'(z), € Q, he FS;(Q,A), which periodic approximation
h(z,2) = h'(z,2), z € A(x), x € Qa is antisymmetric on the cell (i.e. odd with
respect to argument z), and only one fluctuation shape function g(z) = g'(z),
r €, g € FS3(Q,A), which periodic approximation g(z, z) = g*(z, 2), 2 € A(x),
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x € Qp, is symmetric on the cell (i.e. even with respect to argument z). The
fluctuation shape functions should approximate the expected principal modes of
the shell free vibrations on a cell. On a basis of knowledge of these principal modes
in thin heterogeneous shells and plates, cf. e.g. Tomezyk [133], Jedrysiak [27], we
shall postulate fluctuation shape functions in the form of trigonometric functions.
We shall introduce the following periodic approximations h(z, 2), g(zx, ), z € A(x),
x € Qa, of fluctuation shape functions h(z), g(x), x € €,

h(z,z) = Asin (272/)), (6.3)
3z, 2) = A2 [cos (272/)) + c(x)] , (6.4)

where ¢(z) is a slowly-varying function in x and is determined by condition
(ng) =0

) = (1= )i (i)

T (o) + ol — () (6:5)

with 7(x) € [0,1] being a periodic approximation of function n(x) describing
distribution of material properties.

Function ¢(x) is treated as constant in calculations of derivatives 0;g, 0117.

In the calculational examples considered in the application part of this
dissertation, i.e. in Sections 6 and 7, the following periodic approximations 7(x)
of distribution functions of material properties n(x) will be taken into account

n(x) =z/L, (6.6)

i(r) = (¢/L)", (6.7)

i) = (22/L—1)", (6.8)
i(x) = (/L) (6.9)

7(z) =sin (rz/L), (6.10)
n(z) = cos (7z/(2L)), (6.11)
i(x) = sin® (mz/L) , (6.12)
i(x) = cos® (/L) (6.13)
n(z) = 0.6 —0.2(22/L — 1), (6.14)
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n(x) = 0.6 — 0.2sin(wz/L), (6.15)
n(x) =mn= 0.5, (6.16)
where L = L; and where function 77(z) = 0.5 describes periodic distribution of

material properties along circumferential direction.
Diagrams of functions (6.6)-(6.16) are shown in Fig. 6.3.

— ()= n(z) = cos (rx/(2L))
n(z) = ( ) n(x) = sin (TI/L)
n(z) = (23/L71) — (@) = cos” (me/L)
B n(x) = 0.6 — 0.2(2x/L — 1)?
— ) =(v/ ) n(x) = 0.6 — 0.2sin(mrx/L)
n(x) = sn(rr/L) @) =n=05
1.0 T T
0.8 r
e
0.6 - /
n . \\ 7 AN
04rF
0.2 /
/ | 1 L
0‘00.0 0.2 0.4 0.6 0.8 1.0

x/L

Figure 6.3: Diagrams of functions n(z) € [0,1] describing distribution of material properties,
which periodic approximations are expressed by (6.6)-(6.16)

In the sequel, under assumption that for the shells under consideration
condition A\/r < 1 holds we shall introduce the extra approximation 1+ \/r = 1.
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6.2. Free vibrations of the transversally graded shell strip

6.2.1 Formulation of the problem

In this subsection transversal free vibrations of a thin simply supported shell strip
with span L = L; along the circumferential x = x'-coordinate and with constant
thickness are discussed. The shell strip has a tolerance-periodic microstructure
and a functionally graded macrostructure along its span as well as constant
structure in the axial direction. It assumed that the shell strip is made of two
elastic isotropic materials, which are perfectly bonded on interfaces and densely,
tolerance-periodically distributed along z-coordinate. A fragment of such a shell
strip is shown in Fig. 6.1, where in the problem under consideration length
dimension L of the shell along ¢ = z2-coordinate is assumed to be infinite.

The basic cell defined by A = [-A/2, A/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli Fjy,
E5, Poisson’s ratio v = v; = 15 and mass densities py, po. Inside the cell, the
elastic £ € TPY(Q, A) and inertial p € TP(Q2, A) properties of the shell strip
have periodic approximations E(z, 2), p(z, z) z € A(z), z € Qa, defined by (6.2).

The rigidities D*?7(x), B**°(z) of the shell strip are described in Subsection
6.1.

The considerations will be based on equations (5.6), (5.7) of the tolerance model
and equations (5.18) of the asymptotic model and restricted to the simplest forms
of these models in whicha=n=A=N = 1.

In order to investigate free vibrations, we assume that external forces f¢, f are
equal to zero.

Moreover, the forces of inertia in directions tangential to the shell midsurface
are neglected.

We also neglect fluctuating parts hU, of displacements u,,.

Periodic approximation g(z, z), z € A(x), z € Qa, of fluctuation shape function
g € FS3(Q,A) is given by (6.4).

This dynamic problem is treated to be independent of the £-coordinate. Hence,
uJ = 0 and the remaining unknowns u?, w® W of the tolerance and asymptotic
models proposed in this dissertation are only functions of x-midsurface parameter
and t-coordinate.

The investigations will be carried out for different material properties
distribution functions.

Bearing in mind assumptions given above, the effect of a cell size on free
vibration frequencies of the shell strip under consideration will be analysed by
using both the tolerance model represented by equations of motion (5.7) with
constitutive relations (5.6) and the asymptotic model governed by equations (5.18).
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Moreover, the influence of differences between elastic and inertial properties of the
constituent materials on these frequencies will be studied.

6.2.2 Analysis in the framework of tolerance model

Now, the system of tolerance equations (5.7) reduces to the following system of
three equations for ul(z, 2), w(z,t), W(x,t), (x,t) € Q x 1

oy (D) o) + 7 (D) u) = 0,
O (B 01w + (B 0g) W) + 771 (DM1) Dyl +
+ 72 (DM w® + () i® =0,
(B"M19y,0) 0y + <31111 (8119)2> W4 A4 <;L (§)2> W =0,

(6.17)

where g(-) = X 72g(-). We recall that derivative 9;;g(z) of fluctuation shape
function ¢(z) is independent of A as parameter. In equations (6.17) only the

micro-inertia forces \* <u (§)2> W depend on microstructure length parameter .

All coefficients of (6.17) are continuous and slowly-varying functions in argument
x.

It is difficult to find analytical solutions to Egs. (6.17). Thus, to obtain
approximate formulas of free vibration frequencies the known Ritz method can
be applied, cf. Kaliski [46]. Using this method, formulas of the maximal strain
energy F... and the maximal kinetic energy K., are determined.

In the problem under consideration, strain energy function FE(z,t),
(x,t) € Q x I, related to the shell midsurface has the form

1
B= (D“” (e11)? + BHLL (ml)?) , (6.18)
where €17 = Oju; + rtw and k3 = —0w.

The kinetic energy function K(z,t), (z,t) € Q x I, related to the shell
midsurface is given by

K= %u (). (6.19)

Tolerance modelling applied to (6.18) and (6.19) yields the results
1
(E) (x) = 5 {<DHH> (x) ((alu?)Q + 2 (w0)2 + 27"_1(91u(1)w0> +
+ <Bllll> (.77) (allwo)Q +2 <Bllllallg> (w)allwow+ (6.20)

+ <B“11 (8119)2> () (W)2], v €O,
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and
1 L2 - .\ 2
() () = 5 [ ) (2) () + X <u (g)2> () (W) } . reQa. (621
The maximal strain energy and the maximal kinetic energy will be obtained
by integrating results (6.20) and (6.21) over region 2 = (0, L). Unknown functions
n (6.20), (6.21) must satisfy the given boundary conditions for x = 0, z = L.
For the shell strip the solutions to Egs. (6.17) can be assumed in the form

ul(z,t) = A1V (ax) cos(wt),
w’(z,t) = Ay®(ax) cos(wt), (6.22)
W(z,t) = AsO(ax) cos(wt),
where « is a wave number, w is a free vibration frequency of transverse free
vibrations. Functions W(-), ®(-), O(+) have to satisfy the given boundary conditions

for x = 0, x = L. They relate to the principal free vibration modes.
Denote the first derivative of WU(-) and the second derivative of ®(-) by

0¥ (ax) = a¥(azx),

- (6.23)
01 ®(ax) = a”®(ax).
Moreover, let us introduce the following denotations
D= /<D1111> ozac] dx,
D =r2 / (D" () [@(aw)}zdx,
Q
D =r /<D1111> U(ax)®(ax)dr,
Q
B _ 2
B= /<B“11> ) [@(a:c)} dz,
(6.24)



where averages (D'} (z), (B"!)(z), (B"0ug)(z), (B"™(0119)%) (z),
() (x), (u(g?) (z) are given in Appendix, cf. (A.1), (A.8), (A.11), (A.13), (A.19)
and (A.21). We recall that g = A~2g.

Taking into account (6.22) and using denotations (6.24), the maximal strain
energy F... and the maximal kinetic energy K. by the tolerance model can be
written as

1 =~ — ~
Emax = 5 |:OC4B (A2>2 + 062 (ZB A2A3 + D (A1)2> +
+2aD  AAy+ B (A + D (A2>2] , (6.25)
Kax =

[+ X (4] 2

Substituting the right-hand sides of (6.25) into the conditions of the Ritz
method

a (Emax - Kmax)

0A, =0
a (Emax - Kmax)
=0 6.26
aAQ 7 ( )
8 (Emax - Kmax) _ 0
0As -

we obtain from (6.26) the system of three linear homogeneous algebraic equations
for A;, i = 1,2, 3. For a non-trivial solution, the determinant of this system must be
equal to zero. In this manner we arrive at the characteristic equation for frequency
w of the transverse free vibrations of the shell strip under consideration. Under
extra denotations

. (A)4 (6.27)
e=l7) >

from the characteristic equation mentioned above we derive the following formulae
for the fundamental lower free vibration frequency w_ and for the new
additional higher free vibration frequency w, , caused by a tolerance-periodic
structure of the shell strip
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( )2 1 B N o*B +d N
w_) ==
o\ I*n & M
4 (1 2
B m 4m (B ) 27T4B+3L4 —
— - — g
2L & B uB 8 (6.28)
1/2
B + 274 LA Bd + ¥4 9o
i ’
w —
o\ e m
A\ 2
n At (B B + dLA
+ 1+ A
2017 = i B |"° (6.29)

1/2

—~2 N —
B + 2L Bd+ L\ _,,
—~5 He
uB
where constant € involves a microstructure length parameter .
It can be observed that £ = (A\/L)* < 1 can be treated as a small parameter.

Representing the square root in (6.28) in the form of Maclaurin power series with
respect to g, we obtain the following approximate formula for w?

ot E—@ +d| +0 ), (6.30)

where O (2) — 0 together with € — 0. From result (6.30) it follows that the lower
free vibration frequency w_ is independent of a cell size A, contrary to the higher
free vibration frequency w, which depends on .

6.2.3 Analysis in the framework of asymptotic model

In order to evaluate obtained results, let us consider the above problem within the
asymptotic model. Now, asymptotic model equations (5.18) reduce to the following
form
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or (D) oy + 771 (D) ) =0,

o ((BM1) 0u® + (B1100g) W) + 771 (D) dyud+
+ 72 (DM w’ + () i’ =0,

(B™10y,g) yyu® + <B“” (0119)2> W =0,

(6.31)

Note, that (6.31) can also be directly derived from governing equations
(6.17) by neglecting micro-inertia forces A <u(§)2>W depending explicitly on
microstructure length parameter \.

Asymptotic modelling applied to strain energy (6.18) yields the result which
coincides with result (6.20) obtained in the framework of the tolerance modelling.

Asymptotic modelling applied to kinetic energy (6.19) leads to the following
formula for (K) (x)

(K) () = = (u) () (uP)*. (6.32)

Assuming solutions to (6.31) in the form of (6.22) and using denotations
(6.24), we derive formulas for the maximal strain energy and the maximal kinetic
energy. The maximal strain energy obtained in the framework of asymptotic model
coincides with corresponding result (6.25); derived within the tolerance model. The
maximal kinetic energy has the form

1 2
Ko = 571 (A2)” (w)". (6.33)

Substituting the right-hand sides of (6.25); and (6.33) into conditions (6.26) of
the Ritz method, after some manipulations the formula for frequency w?M of the
shell’s transverse free vibrations is obtained in the framework of the asymptotic
model under consideration

N2
(wAM>2 :% ot | B - <B_> +d (6.34)

This frequency is independent of a cell size.

6.2.4 Discussion of analytical results

Analysing results obtained in 6.2.2 and 6.2.3 the following important conclusions
can be formulated:
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e [n the framework of the tolerance model, not only the fundamental lower w_,
but also the new additional higher w, free vibration frequencies can be derived
and analysed; cf. (6.28), (6.29). The higher free vibration frequency is caused
by a tolerance-periodic microstructure of the shell strip under consideration
and hence it depends on a microstructure length parameter \. This frequency
cannot be determined using the asymptotic model.

e Comparing (6.30) and (6.34), we arrive at the following interrelation between
(w_)? and (wWAM)2

(w.)? = (wAM)2 +0 (A (6.35)

It means, that differences between the values of lower free vibration frequency
w_ derived from the tolerance model and free vibration frequency w4 obtained
from the asymptotic one are negligibly small. Thus, in the problem under
consideration, the effect of microstructure length parameter X on the "classical”
free vibration frequencies can be neglected. It means that the asymptotic model
governed by equations (6.31) is sufficient to determine and investigate free vibration
frequencies of the micro-heterogeneous cylindrical shell strip under consideration.

6.2.5 Numerical calculations

The shell strip simply supported on both edges is taken into account.

Functions W(-), ®(-), O(-) occurring in solutions (6.22) satisfying boundary
conditions for the shell strip simply supported on edges x = 0, x = L, i.e. boundary
conditions, cf. Kaliski [46],

AV (0) = @(0) = ©(0) = 911®(0) = 01,0(0) = 0,
V(L) = (L) =0O(L) = 01P(L) = 0uO(L) = 0,

are assumed in the form

V(ax) = cos ax,
: (6.36)
¢(ax) = O(ar) = sin(ax),

where the wave number « is equal to 7/ L.

Calculations are made for approximations 7j(z) of distribution functions of
material properties n(z) given by (6.6)-(6.13) and (6.16).

Diagrams of these functions are shown in Fig. 6.3.

We define the following dimensionless free vibration frequencies

Q) = % (w_)?, (6.37)
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()" = B (wi)?, (6.38)
(QAM>2 = (1+21)’)1L2 (WAM>2, (6.39)

where frequencies w_, wy, w™ are determined by formulae (6.28), (6.29) and
(6.34), respectively.

Some numerical results calculated by formulae (6.37)-(6.39) are shown in Figs.
6.4-6.22.

Calculations are made for Poisson ratio v = 0.3, for fixed ratio d/\ = 0.1 and
for various ratios ¢ = A/L € [0.01,0.1], Ey/E; € [0.2,1.0], pa/p1 € [0.2,1.0].

All plots are made under assumption L = const. It means that the variations of
e = A/ L are caused by the changes of a cell size A\. Moreover, for fixed geometrical
ratio d/A = 0.1, the variations of A imply the changes of shell thickness d with
respect to L, i.e. d/\ = d/(eL) = 0.1 and hence d/L = 0.1e.

In Figs. 6.4, 6.5 there are presented diagrams of dimensionless lower free
vibration frequency 2_ (6.37), which is derived from the tolerance model versus
ratio py/p1, made for distribution functions of material properties 7(x) given by

(6.6)-(6.13), (6.16) and for A\/L = 0.1, Ey/E; = {0.2,0.8}, d/\ = 0.1.

In Figs. 6.6, 6.7 there are presented diagrams of dimensionless free vibration
frequency €2 (6.38), which is obtained in the framework of tolerance model versus

ratio ps/p1, made for distribution functions of material properties 7j(x) given by
(6.6)-(6.13), (6.16) and for A\/L = 0.1, E»/E, = {0.2,0.8}, d/\ = 0.1.

In Figs. 6.8, 6.9 there are shown diagrams of dimensionless lower free vibration
frequency Q_ (6.37), versus ratio Ey/F;, made for material properties distribution
functions 77(x) given by (6.6)-(6.13), (6.16) and for \/L = 0.1, pa/p; = {0.2,0.8},
d/A=0.1.

In Figs. 6.10, 6.11 there are shown diagrams of dimensionless higher free
vibration frequency €, (6.38), versus ratio F,/F;, made for material properties
distribution functions 7(z) given by (6.6)-(6.13), (6.16) and for A\/L = 0.1,
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(/L) 7i(x) = sin? (nx/L)
in (mz/L) —— 7j(z) = cos® (rz/L)
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Figure 6.4: Diagrams of dimensionless lower free vibration frequency Q_ (6.37) of the shell strip

under consideration versus ratio pa/p1, made for distribution functions 77(z) given by (6.6)-(6.13),
(6.16) and for Fy/E; = 0.2, \/L = 0.1

0.0050 T T \
— @) =a/L
o= (/1)
0.0045 i) = (20/L ~1)" |
— 7(z) = (=/L)
7(x) = sin (wm/L)
0.0040 n(z) = cos (rz/(2L)),
0 i(x) = sin® (rz/L)
- —_— i(r) = cos” (wz/L)
0.0035 — @) =05
0.0030
\
0.0025 ‘ ‘ . ‘ . : :
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p2/p1

Figure 6.5: Diagrams of dimensionless lower free vibration frequency _ (6.37) of of the shell strip
under consideration versus ratio pa/p1, made for distribution functions 7j(x) given by (6.6)-(6.13),

(6.16) and for Fy/FE; = 0.8, \/L =0.1
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— () =z/L \ — (@) = (f/L)3 7(z) = sin’ (rz/L)
7(z) = (z/L) , 7(z) =sin (rz/L) —— 7j(z) = cos® (wz/L)
n(z) = (23:/L — 1) n(z) = cos (rx/(2L)) —— 7(z) = 0.5
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Figure 6.6: Diagrams of dimensionless higher free vibration frequency Q4 (6.38) of the shell strip
under consideration versus ratio ps/p1, made for distribution functions 7j(z) given by (6.6)-(6.13),
(6.16) and for By /By = 0.2, \/L = 0.1
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Figure 6.7: Diagrams of dimensionless higher free vibration frequency Q4 (6.38) of the shell strip
under consideration versus ratio pa/p1, made for distribution functions 7j(x) given by (6.6)-(6.13),
(6.16) and for Fy/E; = 0.8, \/L =0.1
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Figure 6.8: Diagrams of dimensionless lower free vibration frequency Q_ (6.37) of the shell
strip under consideration versus ratio Fs/F;, made for distribution functions 7(z) given by

(6.6)-(6.13), (6.16) and for p3/p; = 0.2, \/L = 0.1

— 9(x) =x/L , — (z) = (-T/L)3 7j(z) = sin® (rz/L)
7i(z) = (z/L) , 7i(z) =sin (rz/L) —— 7j(z) = cos® (7z/L)
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Figure 6.9: Diagrams of dimensionless lower free vibration frequency _ (6.37) of the shell
strip under consideration versus ratio Fs/F;, made for distribution functions 7(z) given by
(6.6)-(6.13), (6.16) and for p3/p; = 0.8, \/L = 0.1
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— 7(z)==z/L — 7(x) = (f/L)3 7(x) = sin® (’TFCE/L)

n(z) = (I/L)2 , M(z) =sin (rz/L) —— 7j(z) = cos® (wz/L)
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Figure 6.10: Diagrams of dimensionless higher free vibration frequency Q. (6.38) of the shell

strip under consideration versus ratio Fs/F;, made for distribution functions 7(z) given by
(6.6)-(6.13), (6.16) and for pa/p; = 0.2, \/L =0.1
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Figure 6.11: Diagrams of dimensionless higher free vibration frequency 2, (6.38) of the shell

strip under consideration versus ratio Fs/F;, made for distribution functions 7j(z) given by
(6.6)-(6.13), (6.16) and for pa/p; = 0.8, \/L =0.1
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In Figs. 6.12 and 6.13 there are shown diagrams of dimensionless lower free
vibration frequency Q_ (6.37) from the tolerance model and of dimensionless free
vibration frequency Q4™ (6.39) from the asymptotic one, respectively, versus both
ratios Ey/E; and py/p1, made for material properties distribution functions 7(z)
given by (6.6)-(6.13), (6.16) and for A\/L = 0.1, d/\ = 0.1.

From results shown in Figs. 6.12, 6.13, it follows that differences between {2_
(6.37) and QM (6.39) are negligibly small (maximum relative error is equal to
1.56 - 1079). These numerical results coincide with analytical result (6.35). In the
subsequent diagrams these frequencies will be taken into account simultaneously.

Plots of frequencies Q_ (6.37), QM (6.39) versus both ratios F,/FE; and
p2/p1 are presented in Figs. 6.14, 6.15. These plots are made for distribution
functions of material properties 7(x) given by (6.6)-(6.13), (6.16) and for d/\ = 0.1,
A/L = {0.01,0.05}.

In Figs. 6.16-6.18 there are presented diagrams of dimensionless higher free
vibration frequency Q, (6.38), versus both ratios Fy/FE; and py/p;, made for
material properties distribution functions 7(x) defined by (6.6)-(6.13), (6.16) and
for d/\ = 0.1, \/L = {0.01,0.05,0.1}.

— 7(x) =2/L , 7(z) = sin (wz/L)
W) = (2/0) i) = cos(na/(20)
71(33) = (227/L3— 1) 7(x) = sin? (’.T('.TL‘/L)

—— 7i(x) = (z/L) — 7(z) cos (mz/L)

— #(x)

Figure 6.12: Diagrams of dimensionless lower free vibration frequency Q_ (6.37) of the shell strip
under consideration versus ratios Fs/FE; and pa/p1, made for distribution functions 7j(z) given
by (6.6)-(6.13), (6.16) and for A\/L = 0.1
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— 7j(z) =z/L , —— 7)(z) =sin (7z/L)
@)= (/L) ) = cos(rz/(20)
i(m) = (2$/L3— 1) 7(z) = sin® (wz/L)
— 7(z) = (2/L) —— 7j)(z) = cos® (mz /L)
— 7 0.5

Figure 6.13: Diagrams of dimensionless lower free vibration frequency Q4™ (6.39) of the shell
strip under consideration versus ratios Eo/E; and p2/p1, made for distribution functions 7(x)
given by (6.6)-(6.13), (6.16), and for \/L = 0.1

— 7j(z)=z/L , —— 7)(z) =sin (rz/L)
)= (/) i) = cos(nz/(2L))

i(a:) = (23:/1}3— 1) 7)(z) = sin® (rz/L)
— ii(z) = (¢/L) ()

= 80552 (mz/L)

0.0055
0.0045
Q_, 04 0.0035
0.0025

Figure 6.14: Diagrams of dimensionless lower free vibration frequencies Q_ (6.37), QM (6.39) of
the shell strip under consideration versus ratios Fy/FE; and ps/p1, made for distribution functions
7(x) given by (6.6)-(6.13), (6.16) and for A/L = 0.01
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, ) = sin (wz/L)
i) = (a/1) f(z) = cos (rs/(2L)
n ) = sin® (wz/L)
n(z) = cos” (mz /L)
—n(x) =0.5

Figure 6.15: Diagrams of dimensionless lower free vibration frequencies Q_ (6.37), Q4™ (6.39) of
the shell strip under consideration versus ratios Eo/E; and ps/p;, made for distribution functions

7(x) given by (6.6)-(6.13), (6.16) and for A/L = 0.05

=sin (rz/L)
cos (mz/(2L))

7i(z) = sin® (mz/L)
i(z) = cos” (mz/L)
—— n(z)=0.5

=3
—_—
EPR:]
e
1

Figure 6.16: Diagrams of dimensionless higher free vibration frequency Q4 (6.38) of the shell
strip under consideration versus ratios Eo/E; and ps/p1, made for distribution functions 7j(x)

given by (6.6)-(6.13), (6.16) and for A/L = 0.01
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— fj(z)=2z/L , —— 7)(z) =sin (7z/L)

— ) = (/L) i) = cos(mx/(2L)
ﬁ(x) = (2$/L3— 1) 7(z) = sin® (mz /L)

— 7(z) = (z/L) — 7j(z) = 80552 (wz/L)

Figure 6.17: Diagrams of dimensionless higher free vibration frequency Q. (6.38) of the shell
strip under consideration versus ratios Eo/E; and p2/p1, made for distribution functions 77(x)
given by (6.6)-(6.13), (6.16) and for \/L = 0.05

— 7j(z) =z/L \ —— 7)(z) =sin (7z/L)
— i) = (oL} @) = cos(nr/(2L))
i(m) = (2:1:/1}3— 1) 7(z) = sin® (wz/L)
— 7(z) = (z/L) — 1(z) = cos” (mz /L)
2 — 77(x)=0.5

Figure 6.18: Diagrams of dimensionless higher free vibration frequency 2 (6.38) of the shell
strip under consideration versus ratios Es/E; and ps/p;1, made for distribution functions 7(x)
given by (6.6)-(6.13), (6.16) and for \/L = 0.1
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In Figs. 6.19 and 6.20 there are shown diagrams of respectively dimensionless
lower free vibration frequencies Q_ (6.37), Q4™ (6.39) and dimensionless higher
free vibration frequency €, (6.38), versus ratio d/\ € [0.01,0.1], made for
distribution functions of material properties described by (6.6)-(6.13), (6.16) and
for EQ/El = 025, p2/p1 = 075, )\/L =0.1.

In Figs. 6.21 and 6.22 there are shown diagrams of respectively dimensionless
lower free vibration frequencies _ (6.37), Q4™ (6.39) and dimensionless higher
free vibration frequency €, (6.38), versus dimensionless microstructure length
parameter A/L € [0.01,0.1], made for distribution functions of material properties
described by (6.6)-(6.13), (6.16) and for Ey/E; = 0.25, pa/p1 = 0.75, d/\ = 0.1.

0.045
0.040 r
0.035
0.030 r
0.025 r
Q_.QAJ\J
0.020
0.015

0.010

0.005 ¢

0.000 ‘ ‘ ‘ . ‘ ‘ ‘ ‘
0.00 002 003 0.04 005 006 007 008 009 010

/A

Figure 6.19: Diagrams of dimensionless lower free vibration frequencies Q_ (6.37), Q4™ (6.39)
of the shell strip under consideration versus ratio d/\, made for distribution functions 77(z) given
by (6.6)-(6.13), (6.16) and for FEs/FE; = 0.25, pa/p1 = 0.75, A\/L = 0.1
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=5/
ii(z) = (z/L)
n(z) = (233/L - 1)2
i(z) = (2/L)

() = cos (mz/(2L))
n(x) = sin (ﬂ'su/L)

1(z) = cos® (rz /L)
n(z)=0.5
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Figure 6.20: Diagrams of dimensionless higher free vibration frequency 2, (6.38) of the shell strip
under consideration versus ratio d/\, made for distribution functions 7j(z) given by (6.6)-(6.13),
(6.16) and for Fy/E; = 0.25, pa/p1 = 0.75, A\/L = 0.1
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n(x) =z/L
i(z) = (z/L)* 1
i(z) = (20/L - 1)* |
i(z) = (¢/L)’

— 7(z) =05

7(z) = sin (7z/L)
7j(x) = cos (mx/(2L))
7(z) = sin? (mv/L)
7(z) = cos® (rz/L)

0.01

Figure 6.21: Diagrams of dimensionless lower free vibration frequencies €2_

0.02

0.03 004 005 006 007 008 009 010

AL

(6.37), QM (6.39)

of the shell strip under consideration versus dimensionless microstructure length parameter
A/L, made for distribution functions 7j(z) given by (6.6)-(6.13), (6.16) and for Es/E; = 0.25,

p2/p1 = 0.75, d/)\ =0.1
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Figure 6.22: Diagrams of dimensionless higher free vibration frequency Q2 (6.38) of the shell
strip under consideration versus dimensionless microstructure length parameter A/L, made for
distribution functions 7j(x) given by (6.6)-(6.13), (6.16) and for Es/E, = 0.25, pa/p1 = 0.75,
d/A=0.1

6.2.6 Discussion of numerical results

On the basis results shown in Figs. 6.4-6.22 the following conclusions can be
formulated:

e Agree with analytical results (6.35), values of dimensionless lower free
vibration frequencies Q_ and Q4™ calculated in the framework of the
tolerance and the asymptotic models are nearly identical, cf. Figs. 6.12 and
6.13.

e Values of dimensionless free vibration frequencies Q_, Q,, Q4" increase
with the increasing of ratio Fs/F; € [0.2,1.0], i.e. with the decreasing of
differences between elastic properties of the shell component materials,
cf. Figs. 6.8-6.18. Because the value of Young’s module F; for the stronger
material is fixed then these differences decrease if values of F5 tend to value
of El.

e Values of dimensionless free vibration frequencies Q_, ., Q4M decrease
with the increasing of ratio ps/p; € [0.2,1.0], i.e. with the decreasing of
differences between inertial properties of the shell component materials,
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ct. Figs. 6.4-6.7 and Figs. 6.12-6.18. Because the value of mass density p; for
the stronger material is fixed then these differences decrease if values of po
tend to value of p;.

The highest values of frequencies Q_, Q., Q4™ are obtained for
n(z) = (2z/L — 1)2 and for pair of ratios (Ey/E; = 1.0, pa/p1 = 0.2), ie.
for a shell strip with a very strong inertial heterogeneity and with elastic
homogeneous structure, cf. Figs. 6.12-6.18. The smallest values of €2,
Q., QM are obtained for 7j(z) = (2z/L — 1)2 and for pair of ratios
(Ey/Ey = 0.2, po/p1 = 1.0), i.e. for a shell strip with a very strong elastic
heterogeneity and with inertial homogeneous structure, cf. Figs. 6.12-6.18.

Values of the dimensionless frequencies Q_, Q. , Q4™ increase linearly with

the increasing of ratio d/\, i.e. with the decreasing of differences between
the shell thickness and the microstructure length parameter A, cf. Figs. 6.19
and 6.20.

Values of dimensionless lower free vibration frequencies Q_, Q4 increase
linearly with the increasing of ratio A\/L, cf. Fig. 6.21. However, this increase
is not caused by changes of A\ with respect to L, but by changes of thickness
d with respect to L. It follows from the fact that ratio d/\ = 0.1 is fixed and
hence variations of values of ¢ = d/\ imply the changes of a shell thickness
d with respect to L = const., i.e. d/A =d/(eL) =0.1 - d/L = 0.1e.

Values of the dimensionless higher free vibration frequencies {2, decrease
with the increasing of ratio A/L, i.e. with the decrease of differences between
microstructure length parameter A and the length dimension L of the
shell midsurface in tolerant periodicity direction, cf. Fig. 6.22. For every
distribution function 7(z) under consideration, values of €, decrease very
strongly for \/L € [0.01,0.03].

From results shown in Fig. 6.6 it follows that for fixed wvalue of
ratio E,/FE; =0.2 and for various values of ratio po/p; € [0.2,1], the
values of dimensionless higher free vibration frequency €, (6.38)
obtained for 7j(x) = cos(mx/(2L)), 7j(x) = sin(rx/L) and 7j(z) = sin®(7x/L)
are always greater than for periodic shell strip, i.e. for distribution
function 7(z) =n =0.5. On the other hand, the values of dimensionless
higher free vibration frequency Q. (6.38) obtained for 7(z) = (z/L)?
n(x) = cos*(mx /L), n(x) = (z/L)* 1(x) = (2w/L —1)* are always smaller
than for periodic shell strip.

From results shown in Fig. 6.10 it follows that for fixed wvalue
of ratio py/p1 =0.2 and for various values of ratio FEs/E; € [0.2,1],
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the values of dimensionless higher free vibration frequency Q. (6.38)
obtained for 7(x) = cos(wx/(2L)), 7(x) = sin(rx/L) and 7j(z) = sin®(7z/L)
are always smaller than for periodic shell strip, i.e. for distribution
function 7(z) =n =0.5. On the other hand, the values of dimensionless
higher free vibration frequency €, (6.38) obtained for 7(z) = (z/L)?
n(x) = cos*(mx/L), 7(x) = (z/L)> and 7(x)= (2z/L —1)*> are always
greater than for periodic shell strip.

6.3. Free vibrations of the functionally graded open shell
of finite length dimensions

6.3.1 Formulation of the problem

In this subsection transversal free vibrations of an open cylindrical shell with Ly,
Lo, 7, d as its circumferential length, axial length, midsurface curvature radius
and constant thickness, respectively, are discussed. On the macroscopic level, the
shell has a functionally graded material structure along circumferential direction.
On the microscopic level, the shell is made of two elastic isotropic materials
perfectly bonded on interfaces and densely, tolerance-periodically distributed along
x-coordinate. The shell’s structure in the axial direction is constant. Such a shell
is shown in Fig. 6.1.

The basic cell defined by A = [-A/2, A/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli Ey, Fjs,
Poisson’s ratio v = v; = 1, and mass densities p;, ps. Inside the cell, the elastic
E(z), E € TPY(Q,A) and inertial p(z), p € TP(Q,A), x € Q properties of the
shell have periodic approximations E(z, z), p(z,z), z € A(z), z € Qa defined by
(6.2).

The rigidities D®?(z), B“*°(z), x € Q of the shell are described in Subsection
6.1.

The considerations will be based on equations (5.6), (5.7) of the tolerance model
and equations (5.18) of the asymptotic model and restricted to the simplest forms
of these models in whicha=n=A=N = 1.

In order to investigate free vibrations, we assume that external forces f¢, f are
equal to zero.

Moreover, the forces of inertia in directions tangential to the shell midsurface
are neglected.

We also neglect fluctuating parts h(z)U,(z,§,t) of displacements u,(x,&, 1),
(x,&,t) e A x =Ex L
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Periodic approximation g(z, z), z € A(x), z € Qa, of fluctuation shape function
g(-) € FS3(Q, A) is given by (6.4).

The investigations will be carried out for a simply supported shell and for
approximations 7(x) of material properties distribution functions n(x) given by
(6.14) and (6.15), i.e. for 7j(z) = 0.6—0.2(2z/L—1)% and 7j(x) = 0.6—0.2sin(7z /L),
respectively. We recall that L = L;.

Bearing in mind assumptions given above, the effect of a cell size on free
vibration frequencies of the shell under consideration will be analysed by using
both the tolerance model represented by equations of motion (5.7) with constitutive
relations (5.6) and the asymptotic model governed by equations (5.18). Moreover,
the influence of differences between elastic and inertial properties of the constituent
materials on these frequencies will be studied.

The very important aim of this subsection is to verify the analytical results
using numerical analysis performed with commercial computer software Ansys
based on the finite element method.

6.3.2 Analysis in the framework of tolerance model

Now, the system of tolerance equations (5.7) reduces to the following system of

o, (<Do¢5’75> aéug Lt <Da611> wo) _0,

Do (<B‘W> Ol + (B 0g ) W+ N2 (B2 822W) +

+ ! <D11”‘5> Osul +r~2 (D" w + (uy@° = 0, (6.40)
<B11aﬂaug> D + N2 <Ba522§> Bugaat® + <B1111 (8119)2> Wi

+ 20 (GB20119) 00 W — 4N (B2 (915)° ) 05+

+ M {(B?2G) 0gp0oW + N (ug*) W = 0,

where g(-) = X 7'g(), g(-) = A 2g(-). We recall that derivative dy;g(x) of
fluctuation shape function g(x) is independent of A as parameter. In equations
(6.40) some terms depend on microstructure length parameter . All coefficients
of (6.40) are continuous and slowly-varying functions in argument x.

It is difficult to find analytical solutions to Egs. (6.40). Thus, similarly
as Subsection 6.2, in order to obtain approximate formulas of free vibration
frequencies the known Ritz method can be applied, cf. Kaliski [46]. Using this
method, formulas of the maximal strain energy F,... and the maximal kinetic
energy K., are determined.
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In the problem under consideration, strain energy function £ = FE(z,&,t),
(r,&,t) € Q x Z x I, related to the shell midsurface has the form given by (4.2).
Below, we recall this function

1
E = 5 (Daﬁvtseaﬁew + Ba,375/§a5/€75> , (641)
where Cap = %<aﬁua + aauﬁ) - baﬁw7 Rap = —0OapW, bll = _T_17

bag = b1z = by1 = 0.
The kinetic energy function K = K(x,&,t), (x,&,t) € Q x = x I, related to the
shell midsurface is given by
1

K= u (w)” . (6.42)

Tolerance modelling applied to (6.41) and (6.42) yields the results

1

(B) (@) =

(D) () ((a@;)z +Zontud + % (wO)Z) "

+(D*22) (z) (0u8)” + 2 (D"'*2) (x) (31U?32ug + lw‘)@wg) +

+ (D) (z < 82u1 81u2) + 282u(1)81u2> + (B (z (811w0)2 n
+2(B"Mayg) (2)01u"W + <B““ (O119) >(a:)W2+

+ 2 <<BH22> 811w 822’(1) + >\2 <31122g> 811’(1) 822W+ (64?))
i <31122311g> )Daat® W + A2 <Bll2293ng> W822W>

-+ <B2222> (LC) (62211)0) -+ 2)\2 <B2222 > ( )822’(1} 822W+

+ 1 <BQ222§2> (x) ((922W +4 <Blzl2> x) (81210 )2 +

44N <Bm2 (0@2> (@) (W) |, € Qa,

and
() @) =5 [0 (@) + X (0@ @) (7)'] wens G

The maximal strain energy and the maximal kinetic energy will be obtained by
integrating results (6.43) and (6.44) over region Q2 x = = (0, L) % (0, L2). Unknown
functions in (6.43), (6.44) must satisfy the given boundary conditions for z = 0,
x=1Lyand £ =0, £ = Lo.
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Solutions to Eqs. (6.40) satisfying the boundary conditions for a simply
supported shell can be assumed in the form

ul(z,€,t) Z ZA n €08 () sin (5,€) cos (Wmnt) ,
m=1 n=1
uy(z,€,t) Z Zan sin () cos (Br€) cos (Wmnt) ,
mein=l (6.45)

(z,€,1) Z Z Crn Sin () sin (8,€) cos (Wymt) ,

m=1n=1

W(z,&,t) Z ZDmn sin () sin (&) cos (Wmnt) ,

m=1n=1

where « = mn/L; and § = nw/Ly are wave numbers, W, is a frequency of
transverse free vibrations.
Let us introduce the following denotations

Li Ly

Un = //<DHH> sin? (q,2) sin? (B,€) déd,
00

Li L»

Dy = 0/0/ (D****) sin® () sin® (B,€) déd,

Li Ly

oy = O//<D1122> sin? (qu,x) sin? (B,€) déd,

L1 Ly

_ / / (DY cos® (apa) cos® (Br€) déde, (6.46)

L1 Ly

Cmn = //<BHH> sin? (q,x) sin? (B,€) dédw,
00

L1 Ly

Cmn = BHY19,, g) sin? (o) sin® (B,€) dédz,
[ [ (5 oug)sint ) sin® 5,6) de

0 0
L1 Ly

Conn = // <B1111 (8119)2> sin? (q,x) sin? (B,€) déd,

0 0
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L1 L»

7 = 1122\ ;.2 22
kmn_O/O/<B ) sin® (o, @) sin® (8,€) dédu,

L1 Ly

En = (B"?*g) sin® (o, ) sin® (8,€) déda,
[/

L1 Ly

//gmn = <311228ug> sin? (qu,x) sin? (B,€) dédw,
/]

Li Lo

Dinn, = // <Bll22§811g> sin? (ay,z) sin? (B,€) déd,
00
L1 Lo

Drnn, = //<BQQ22> sin? (qu,2) sin? (B8,€) dédw,

Din = //<BQ222§> sin? (a,2) sin® (B,€) déd, (6.46.0nta)

Li Lo

Do = //<BQQ22§2> sin? (q,x) sin? (B,€) dédw,
00
Li L»

Smn = //<31212> cos? () cos? (Bu€) déd,
00

L1 Ly

Sn = // <Bl212 (81§)Q> sin? (o, @) cos? (B,€) dédx,
Sn = // () sin? () sin? (B,,€) dédz,

Son = [ [ (@) siv? (aa)sin? (5,6) ded

where averages () are given in Appendix, cf. (A.1)-(A.19) and (A.21). We recall
that g=A""g(-), g(-) = A7%g(-).

Taking into account (6.45) and using denotations (6.46), for arbitrary but fixed
m, n, the maximal strain energy FE.. and the maximal kinetic energy K., by
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the tolerance model can be written as

1
Emax = 3
2

rcz, (wamn b @b + 202,82 (R + 25, ) + 5¢§mn) "

+ D2, (

+ 2287 (28mn — Prnn) + A5y Do) + (6.47)

+ 2Amannamﬁn (C_lmn - Emn) - 2AmnCmnr71amamn+
- QanCmnr_lﬁnC_lmn—{'

+ 2CnDin (/\2 (afnﬂg Kpn + B4 ﬁmn) — (ozfnémn + 5,%%))] ;

— 1 2 = 2 4
Kmax - 9 [Cmnsmn + Dmn>\ Smn}

w0 (6.48)

mn*

Substituting the right-hand sides of (6.47) and (6.48) into the conditions of the

Ritz method

a (Emax - Kmax)

oA
8 (Emax - Kmax) _ 0
0Bn, ’
8 (Emax - Kmax) _ 0
0Cmn ’
a (Ernax - KmaX) _ 0
0Dy, ’

(6.49)

we obtain from (6.49), for arbitrary but fixed m, n, the system of four linear
homogeneous algebraic equations for A,.., Bmn, Cmn, Dmn. For a non-trivial
solution, the determinant of this system must be equal to zero. In this manner
we arrive at the characteristic equation for frequency w,,, of the transverse free
vibrations of the shell under consideration. Using (6.46) we introduce the extra

denotations

P,.,= oﬁ,ﬁmn + Bﬁ Emn, P = ﬁigmn + Oz?n Emn,

i = 1 %G + OPnn + 202,82 (Fonn + 25mn ) + BiPoun,
mn = Qi On (Emn — Emn> ,
mn = 262 (28mn = Pun) s R = B3 Do

Spn = 02,82 kmn + 5L D,

f=v) B v))

N

Q- 2= 27,
Smn - &memn + ﬁnkmna
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Smn =T Onlmn,

Son =17 Baldin,  (6.50)



and

(6.51)

Under denotations €, Smn, Smn given by (6.46)7, (6.46)17 15, respectively, and
taking into account expression (6.51) for X, together with (6.50);_¢ as well as

notations Emn, ﬁmn, gmn, S mn given by (6.50)7_19, from the characteristic equation
mentioned above we derive the following formulae for the lower free vibration
frequency W, and for the new additional higher free vibration frequency Womn.,
caused by a tolerance-periodic structure of the shell

(@n-)? = 5 N + 3 +
. N - 2
" INE ((Emn + ARy + )\4Rmn) Spm + A Emnxmn> +
(6.52)
— AN S ((Emn + N Ry + A4§mn> Xonn+
N : ) 1/2
— (/\QSmn — Smn) > ,
@runs)? = % G + Af,g; n+ X B ;C;n: N
2
+ m ((@mn + N2 Ryn + A4§mn> S 4+ M §mnxmn> +
(6.53)

~ 2
- <)\2§mn - gmn) )
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Results (6.52), (6.53) depend explicitly on a microstructure length
parameter \.

6.3.3 Analysis in the framework of asymptotic model

In order to evaluate the obtained results, let us consider the above problem within
the asymptotic model. Now, asymptotic model equations (5.18) reduce to the

following form
O <<DO‘57‘5> 05u2 + ! <D°‘511> w0> =0,

0us ({5 g0 + (B 00 ) 1) 4
+r! <D1”5> Osuy +r 2 (DM w® + () i” =0,

<Bﬂaﬁaug> Do’ + <B1111 (811g)2> W =0,

(6.54)

Note, that (6.54) can also be derived directly from governing equations (6.40)
by neglecting terms depending explicitly on microstructure length parameter .

Asymptotic modelling applied to strain energy (6.41) yields the result having
form of (6.43) without terms depending on microstructure length parameter \.

Asymptotic modelling applied to kinetic energy (6.42) leads to result having
form of (6.44) without a term depending on a cell size .

Assuming solutions to (6.54) in the form of (6.45) and using denotations (6.46),
for arbitrary but fixed m,n, we derive formulas for the maximal strain energy and
the maximal kinetic energy. The maximal strain energy obtained in the framework
of asymptotic model has a form of result (6.47) derived within the tolerance model
but without terms depending on A. The maximal kinetic energy has the form of
result (6.48) obtained within the tolerance model but without a term including A
and with free vibration frequency @ﬁ% of the asymptotic model which replaced
free vibration frequency Ww,,, of the tolerance one.

Neglecting in (6.47), (6.48) the length-scale terms and replacing in (6.48)
frequency @y, by @AY and then substituting the right-hand sides of (6.47), (6.48)
into conditions (6.49) of the Ritz method, after some manipulations the formula for
frequency @M of the shell’s transverse free vibrations is derived in the framework
of the asymptotic model under consideration

2 S )2
(@) = L _ D) (6.55)

where €nn, Smn, Smns Xmn are given by (6.46);, (6.46)17, (6.50)10, (6.51),
respectively. This frequency is independent of a cell size.
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6.3.4 Numerical calculations

For the simply supported shell under consideration, calculations are made for
approximations 7(x) of material properties distribution functions n(x) given by
(6.14)-(6.16), i.e. for f(x) = 0.6 — 0.2(2x/L — 1)%, 5j(xz) = 0.6 — 0.2sin(7z/L) and
n(x) =mn = 0.5.

Diagrams of these functions are shown in Fig. 6.3.

Calculations are made for Poisson’s ratio v = 0.3, for fixed ratios Ly/L1 = 2/7
(short shell), d/\ = 12/(1257), A/ Ly = 1/24 and for various ratios Ey/E; € [0.2,1],
pg/p1 € [0.2, 1].

From numerical analysis carried out it follows that for the shell under
consideration, the smallest free vibration frequency related to the lowest free
vibration mode is obtained for m =5 and n = 1, i.e. for wave numbers o = 57/L;
and 5 = m/Ls.

In the subsequent considerations, by @_, @, @ we shall denote frequencies
related to m =5 and n = 1.

We define the following dimensionless free vibration frequencies

(@)2 = (1+21>’)1L2 @)%, (6.56)

_ (1_’/2)P1L2 ~ 2

() == @, (6.57)

(QAM>2 _ (=)l '21) Pl (@AM>2, (6.58)

where &_, @, @' are given by (6.52), (6.53), (6.55), respectively. We recall that
L=1L1L,.

Results of calculations are given in Figs. 6.23 and 6.24.

In Fig. 6.23 there are presented diagrams of lower free dimensionless

vibration frequencies Q_ (6.56), o™ (6.58) derived from the tolerance and
asymptotic models, respectively, versus both ratios Fy/F; and py/p;, made for
distribution functions of material properties 77(z) described by (6.14)-(6.16) and
for /Ly, = 1/24, d/\ = 12/(1257).

In Fig. 6.24 there are shown diagrams of higher dimensionless free vibration
frequency Q. (6.57) derived from the tolerance model versus both ratios E»/E;

and po/p1, made for material properties distribution functions 77(x) described by
(6.14)-(6.16) and for \/Ly = 1/24, d/X = 12/(125).
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—— 7(z)=n=0.5
— 7j(z) =06 — 0.2(2z/L — 1)*
7(z) = 0.6 — 0.2sin(mx/L)
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Figure 6.23: Diagrams of dimensionless lower free vibration frequencies Q_ (6.56), Q M (6.58)
of the shell under consideration versus ratios Eo/F; and pa/p1, made for distribution functions
7(x) given by (6.14)-(6.16) and for A\/L; = 1/24, d/\ = 12/(1257)

— () =9n=05
— 7j(z) = 0.6 — 0.2(2z/L — 1)?
7(x) = 0.6 — 0.2sin(mx /L)
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Figure 6.24: Diagrams of dimensionless higher free vibration frequency §+ (6.57) of the shell
under consideration versus ratios Fs/FE; and pa/p;, made for distribution functions 7j(z) given
by (6.14)-(6.16) and for \/L; = 1/24, d/X = 12/(1257)
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6.3.5 Discussion of analytical and numerical results

On the basis of analytical results obtained in 6.3.2 and 6.3.3 the following
important conclusions can be formulated:

e In the framework of the tolerance model, not only the fundamental lower
Winn—, but also the new additional higher Wy, free vibration frequencies
can be derived and analysed; cf. (6.52), (6.53). The higher free vibration
frequency is caused by a tolerance-periodic microstructure of the shell under
consideration and hence it depends on a microstructure length parameter A.
This frequency cannot be determined using the asymptotic model. Within
asymptotic model only the lower cell-independent free vibration frequency

WAM (6.55) can be obtained and investigated.

Similar results have been obtained for the transversally graded shell strip
analysed in Subsection 6.2.

On the basis of numerical results shown in Figs. 6.23 and 6.24, the following
conclusions can be formulated:

~

e Values of dimensionless lower free vibration frequencies 2_ (6.56) and o™
(6.58) calculated in the framework of the tolerance and the asymptotic
models are nearly identical, cf. Fig. 6.23. It means, that differences between
the values of lower free vibration frequency Q_ derived from the tolerance

model and free vibration frequency @AM obtained from the asymptotic

one are negligibly small. Thus, in the problem under consideration, the

effect of microstructure length parameter X on the "classical” free vibration

frequencies can be neglected. It means that the asymptotic model governed

by equations (6.54) is sufficient to determine and investigate free vibration

frequencies of the micro-heterogeneous cylindrical shell under consideration.
e Values of free vibration frequencies Q_, Q0 , Q4™ increase with the increasing
of ratio By /Ey € [0.2,1], i.e. with the decreasing of differences between elastic
properties of the shell component materials, cf. Figs. 6.23 and 6.24. Because
the value of Young’s module F; for the stronger material is fixed then these
differences decrease if values of Es tend to value of E;.

e Values of free vibration frequencies Q_, Q. , Q4™ decrease with the increasing
of ratio pa/p1 € [0.2, 1], i.e. with the decreasing of differences between inertial
properties of the component materials, cf. Figs. 6.23 and 6.24. Because
the value of mass density p; for the stronger material is fixed then these
differences decrease if values of ps tend to value of p;.
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e The highest values of frequencies O ﬁ , cf. Fig. 6.23, are obtained
for 7(z) given by (6.15), i.e. n(z) = 0.6 — 0.2sin(rz/L) and for pair of
ratios (Ey/Fy = 1.0, pa/p1 = 0.2), i.e. for a shell with a very strong inertial
heterogeneity and with elastic homogeneous structure. The smallest values of

~

~A — —
Q_,Q ™ are obtained for n(x) given by (6.15), i.e. n(x) = 0.6 —0.2sin(mwx /L)
and for pair of ratios (E2/E; = 0.2, pa/p1 = 1.0), i.e. for a shell with a very
strong elastic heterogeneity and with inertial homogeneous structure.

e The highest value of frequency ., cf. Fig. 6.24, is obtained for 7j(z) given
by (6.15), i.e. n(x) = 0.6 — 0.2 sin(wz/L) and for pair of ratios (Fy/E; = 1.0,
p2/p1 = 0.2). The smallest value of €2 is obtained for 7(x) given by (6.15), i
n(x) = 0.6 — 0.2sin(7x/L) and for pair of ratios (Fy/E1 = 0.2, pa/p1 = 1.0),
ct. Fig. 6.24.

6.3.6 Verification of selected analytical results using
commercial computer software Ansys

In this subsection the computational results obtained in the framework of the
tolerance and asymptotic models will be compared with corresponding results

obtained from the commercial software Ansys® Academic Research Mechanical
2020 R1.

Object under consideration is a simply supported thin cylindrical open shell
with r = 1 m, Ly = 7mr/2, Ly = r, d = 0.002 m, A = L;/24. We recall that
the shell is made of 2 kinds of materials tolerance-periodically distributed in
circurumferential direction as shown in Fig. 6.1. The basic cell is shown in Fig.
6.2. It is assumed that properties of one of these materials are fixed and equal
to structural steel properties: E; = 2 - 10" Pa, p; = 7850 kg/m? v = 0.3. The
properties of the second material are described by Fy = Eik, po = p1¢, v = 0.3
where k € [0.2,1], ¢ € [0.2,1]. Calculations are made for two distribution functions
of material properties: 77(z) = 0.6 —0.2(2z/L —1)? and 77 () = 0.6 — 0.2 sin(wz/L).
We recall that L = L;.

In Fig. 6.25 there are presented diagrams of lower free vibration frequency w_
(6.56) derived from the tolerance model versus both ratios Ey/E; and pa/p;, made
for distribution functions of material properties 77(z) described by (6.14), (6.15)
and for A\/L, = 1/24, d/)\ = 12/(1257). Note, that diagrams shown in Fig. 6.25
are the same as shown in Fig. 6.23, but made for dimension values of free vibration
frequency w_. Equation (6.59) given below shows how these values were calculated
(units conversion included)
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Figure 6.25: Diagrams of lower free vibration frequency w_ (6.59) of the shell under consideration
versus ratios Eo/Eq and pa/p1, made for distribution functions 7(x) given by (6.14), (6.15) and
for \/Ly = 1/24, d/\ = 12/(125)

Using Ansys, the eight node quadrilateral shaped shell element (SHELL281)
was applied for meshing the shell. Boundary conditions were modelled by fixed
displacements in the respective directions. Mutual contact regions were used to
model perfect boundary on interfaces.

For every considered pair Es/E;, p2/p1 and for both distribution functions
the first (smallest) fundamental free vibration frequency is obtained for wave
numbers a = 57/L; and f = 7w/Ly (i.e. for m = 5 and n = 1). The first (i.e.
lowest) free vibration modes obtained for E,/E; = 0.5 and py/p; = 0.5, for
n(z) = 0.6 —0.2(2x/L — 1)*> and 77 (x) = 0.6 — 0.2sin(mw/L) are presented in Figs.
6.27 and 6.28, respectively.



Figure 6.26: Shells under consideration shown in commercial software Ansys; a) tolerance-periodic
shell with distribution of material properties described by function 7(x) = 0.6 — 0.2(2z/L — 1)?
b) tolerance-periodic shell with distribution of material properties described by function
7(x) = 0.6 —0.2sin(wx/L)

Figure 6.27: The first free vibration mode related to distribution function
n(z) =0.6 —0.2(2x/L — 1)?

Figure 6.28: The first free vibration mode related to distribution function
7 (z) =0.6 — 0.2sin(wx/L)

Results shown in Figs. 6.27 and 6.28 proof that the lowest vibration mode
related to distributions functions given by (6.14) and (6.15) are nearly identical.

The first step was a convergence analysis for the results obtained from Ansys,
i.e. to check weather the increase in the number of elements has a significant impact
on the values of vibration frequencies. Calculations were made for Fy/E; = 0.5,
p2/p1 = 0.5, for both distrubution functions under consideration and for different
number of finite elements. The results are shown in Figs. 6.29 and 6.30. In
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the next steps calculations are made for 8019 elements for distribution function
n(z) =0.6 —0.2(2z/L — 1)*> and for 8020 elements for distribution function
n(z) =0.6 —0.2sin(rx/L).

1951 1°" free vibration frequencies =
* . . .
2" free vibration frequencies =
120 3™ free vibration frequencies +
’ 4" free vibration frequencies
115+
110
w[Hz] *
105 =
-
100+ R EE R R EE R R R R R R R R R
"
051,
-
O0F »= 1
# # & 28 & ¥ ##% & & & 22 B2 2 & EES " &8 ¥
*
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number of elements

Figure 6.29: Diagrams of the first four free vibration frequencies of the shell under consideration
with distribution of material properties described by function 7j(z) = 0.6—0.2(2x/L—1)? obtained
from commercial software Ansys versus number of elements used for calculations

1251 1% free vibration frequencies =
b . . .
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Figure 6.30: Diagrams of the first four free vibration frequencies of the shell under consideration

with distribution of material properties described by function 7 (z) = 0.6—0.2 sin(7z/L) obtained
from commercial software Ansys versus number of elements used for calculations
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It is worth noting that for the shell under consideration the difference between
first and second free vibration frequencies is relatively small (approximately 1.5%),
so from an engineering point of view it is reasonable to compare the results for a
larger number of succesive free vibration frequencies. In the next steps the first 25
smallest free vibration frequencies are considered. We define the following mean
absolute relative error (MARE)

1 2| GFEM _ 5T

w’L 7
MARE = P e v (6.60)
n=1 7
where @fEM is i-th free vibration frequency obtained from Finite Element Method,
@iTM is i-th free vibration frequency obtained from Tolerance Modelling.

Below we present computational results for distribution function
n(z) =0.6 —0.2(2z/L; — 1)%
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Finite Element Method pz2/m
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Finite Element Method p2/m
Tolerance Modelling p2/m
Finite Element Method pz2/m
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Figure 6.31: Comparision of results obtained from the tolerance modelling and from the finite

element method (Ansys), for distribution function 7(z) = 0.6 — 0.2(2x/L — 1)? and fixed values
pa/p1 = {0.25,0.5,0.75,1.0}
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Tolerance Modelling Fs/Ey = 1.00

Finite Element Method Es/E; = 1.00 »
Tolerance Modelling Es/Ey = 0.75
Finite Element Method E2/E; = 0.75
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Figure 6.32: Comparision of results obtained from the tolerance modelling and from the finite

element method (Ansys), for distribution function 7(x) = 0.6 — 0.2(2z/L — 1)? and fixed values
E»/E; = {0.25,0.5,0.75,1.0}

E»/E,
025 | 050 | 0.75 | 1.00
0.25 | 5.19% | 1.8% | 1.06% | 1.04%
0.50 | 5.46% | 1.80% | 0.97% | 0.86%
P2/Pr o T 1% T 1.80% | 0.07% | 0.70%
1.00 | 5.94% | 1.99% | 1.01% | 0.77%

Table 6.1: Relative error for first free frequency for the tolerance-periodic shell with distribution
of material properties described by function 7j(z) = 0.6 — 0.2(2x/L — 1), for different values of
pairs Fs/FE; and pa/p;
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E»/E,
025 | 050 | 0.75 | 1.00
0.25 | 6.39% | 1.78% | 0.70% | 0.62%
0.50 | 7.28% | 1.9% | 0.60% | 0.46%
P2/ Pt o 7 58% [ 2.07% | 0.61% | 0.41%
1.00 | 7.81% | 2.21% | 0.64% | 0.41%

Table 6.2: Mean absolute relative error (6.60) for the tolerance-periodic shell with distribution
of material properties described by function 7(z) = 0.6 — 0.2(2x/L — 1)?, for different values of
pairs Es/FE; and pa/p;

Below we present computational results for distribution function
n(z) =0.6 —0.2sin(mz/L).

Tolerance Modelling p2/p1 = 1.00
Finite Element Method p2/p1 = 1.00 »
Tolerance Modelling p2/p1 = 0.75
Finite Element Method pz2/p1 = 0.75 .
Tolerance Modelling p2/p1 = 0.50
Finite Element Method p2/p1 = 0.50 *
Tolerance Modelling pa/p1 = 0.25
. Finite Element Method p2/p1 = 0.25 .
120 T T T T . T T
110
100
w[Hz]
90
&0
70
6[) » 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E2/E;
Figure 6.33: Comparision of results obtained from the tolerance modelling and from the finite

element method (Ansys), for distribution function 7 () = 0.6 — 0.2sin(7z/L) and fixed values
pa/p1 = {0.25,0.5,0.75,1.0}
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Tolerance Modelling Es/Ey = 1.0(
(

Finite Element Method E»/E; = 1.0 »
Tolerance Modelling Es/E, = 0.75
Finite Element Method E»/E; = 0.75 .
Tolerance Modelling Fs/Ey = 0.50
Finite Element Method Ey/E; = 0.50 »
Tolerance Modelling E,/E; = 0.25
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Figure 6.34: Comparision of results obtained from the tolerance modelling and from the finite

element method (Ansys), for distribution function 7 () = 0.6 — 0.2sin(wz/L) and fixed values
E»/E; = {0.25,0.5,0.75,1.0}

E»/E,
025 | 050 | 0.75 | 1.00
0.25 | 4.37% | 1.64% | 1.12% | 1.15%
0.50 | 4.65% | 1.64% | 0.98% | 0.90%
P2/P1 o T 1.09% | 1.74% | 0.96% | 0.80%
1.00 | 5.15% | 1.87% | 1.00% | 0.78%

Table 6.3: Relative error for first free frequency for the tolerance-periodic shell with distribution
of material properties described by function 7 (z) = 0.6 — 0.2sin(wz/L), for different values of
pairs Fs/FE; and pa/p;
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Ey/Er
025 | 050 | 0.75 | 1.00
0.25 | 5.98% | 1.57% | 0.68% | 0.62%
0.50 | 6.43% | 1.76% | 0.60% | 0.47%
P2/Pt o5 T 674% | 1.93% | 0.60% | 0.41%
1.00 | 6.96% | 2.06% | 0.62% | 0.41%

Table 6.4: Mean absolute relative error (6.60) for the tolerance-periodic shell with distribution
of material properties described by function 77 (z) = 0.6 — 0.2sin(wz/L), for different values of
pairs Es/E; and ps/p1

Discussion of results

On the basis of results shown in this subsection the following conclusions can be
formulated:

e The high convergence of results (cf. Figs. 6.30-6.29) makes it possible to use
results obtained from Ansys as a reference to those obtained in the framework
of the tolerance modelling procedure.

e For both distribution functions under consideration the first fundamental
frequency was ws;. The difference between first and second free vibration
frequencies is relatively small, so it is important not to limit calculations to
only first fundamental vibration frequency.

e The values of ratio F/Es have a greater impact on values of both the relative
error for first free frequency and the mean absolute relative error than the
values of ratio py/ps.

e Relative error for the first free frequency for the tolerance-periodic
shell with distribution of material properties given by function
7(z) = 0.6 —0.2(2z/L — 1)* varies from 0.77% (for Fy/E; = 1.0 and
p2/p1 = 1.0) to 5.94% (for Ey/E, = 0.25 and py/p; = 1.0). Mean absolute
relative error for the tolerance-periodic shell with distribution of material
properties described by function 7 (z) = 0.6 — 0.2sin(wz/L) varies from
0.77% (for Ey/F; = 1.0 and py/p; = 1.0) to 5.15% (for Ey/E; = 0.25

and po/p; = 1.0).

e For shells with small differences in material properties E;/E, € [0.5,1] and
p2/p1 € [0.5,1], maximum relative error for the first free frequency for
distribution function 77(z) = 0.6 — 0.2(2z/L — 1)? is equal to 1.99% and
for distribution function 7 (z) = 0.6 — 0.2sin(7z/L) is equal to 1.87%.
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e Mean absolute relative error for the tolerance-periodic shell with distribution
of material properties described by function 7(x) = 0.6 — 0.2(2x/L — 1)?
varies from 0.41% (for E;/E; =1.0 and py/p; =1.0) to 7.81% (for
Ey/E; =025 and py/p; =1.0). Mean absolute relative error for
tolerance-periodic shell with distribution of material properties described
by function 7 (z) = 0.6 — 0.2sin(7wx /L) varies from 0.41% (for Ey/E, = 1.0
and py/p1 = 1.0) to 6.96% (for Ey/E; = 0.25 and py/p1 = 1.0).

e For shells with small differences in material properties Fi/E, € [0.5,1]
and py/p1 € 0.5, 1], maximum mean absolute relative error for distribution
function 7j(z) = 0.6 — 0.2(2z/L — 1)? is equal to 2.21% and for distribution
function 77 (z) = 0.6 — 0.2sin(7x /L) is equal to 2.06%.
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7. Selected dynamic problems of
micro-dynamics: Application of the
combined asymptotic-tolerance model

7.1. Introduction

In all special micro-dynamic problems investigated in this chapter, the object
of considerations is an open thin cylindrical shell with Li, Lo, r, d as its
circumferential length, axial length, midsurface curvature radius and constant
thickness, respectively. The shell has a functionally graded macrostructure and
a tolerance-periodic microstructure along circumferential direction as well as a
constant structure in the axial direction. On the microscopic level, the shell is
made of two elastic isotropic materials, which are perfectly bonded on interfaces
and tolerance-periodically distributed along x-coordinate. Such a shell is shown in
Fig. 6.1.

The basic cell defined by A = [-A/2, \/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli F,, Es,
Poisson’s ratio v = 11 = 15 and mass densities p;, po. Inside the cell, the elastic
E € TP)(Q,A) and inertial p € TP?(Q, A) properties of the shell have periodic
approximations E(z, z), p(z,2), z € A(z), = € Qa, defined by (6.2).

The rigidities D*#(z), B*#(x), x € €, of the shell are described in
Subsection 6.1.

The considerations will be based on superimposed microscopic model equations
(5.34)-(5.36) derived in the second step of the combined asymptotic-tolerance
modelling. Equations (5.34)-(5.36) are independent of solutions obtained in the
framework of asymptotic (macroscopic model) derived in the first step of combined
modelling. Hence, they make it possible to investigate the shell micro-dynamics
separately from the shell macro-dynamics. This is the greatest advantage of the
combined asymptotic-tolerance model proposed in this dissertation.

The considerations will be restricted to the simplest form of the model in which
a=n=A=N=1.
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Periodic approximations %(m, 2),9(x, 2), z € A(z), z € Qa, of fluctuation shape
functions h € FS}(Q,A), g € FS3(Q, A) are given by (6.3) and (6.4), respectively.

Some from approximations 7(x) of material properties distribution functions
n(x) expressed by (6.6)-(6.16) will be used.

In this subsection, the influence of a cell size on the free micro-vibration
frequencies and on the character of displacement micro-fluctuations caused by a
tolerance-periodic structure of the shell will be investigated. Moreover, the effect of
a microstructure size on the displacement wave propagating in the axial direction,
i.e. in the direction parallel to the interfaces between component materials, will be
studied. It will be also shown that the superimposed microscopic model equations
(5.34)-(5.36) describe certain space-boundary layer phenomena strictly related to
the specific form of boundary conditions imposed on micro-fluctuation amplitudes
being unknowns in these equations. The length-scale effect will be also analysed
in a certain special initial value problem.

It has to be emphasized that the special problems mentioned above cannot be
analysed in the framework of asymptotic models.

7.2. Free micro-vibrations

In this subsection we derive micro-vibration frequencies of the tolerance-periodic
shell under consideration independently of the macro-vibration frequencies. The
shell is simply supported on all four edges.

The subsequent analysis will be based on Egs. (5.34)-(5.36). Since coefficients of
these equations are functions of z, then the approximate formulae of free vibration
frequencies will be derived applying the known Galerkin method, cf. [46], in the
range 0 <z < L.

7.2.1 Analytical results

Free micro-vibrations in circumferential direction

The shell free micro-vibrations along circumferential direction are described by Eq.
(5.34). For a = n = 1, this equation has the following form

(D™2(h)?) ()01 — (DM (9:h)*) (2)@s — (e (W) )(2)s = 0.

x € Qa,

(7.1)

where averages (DM (9,h)?), (D™2(h)?), (u(h)?) are given in Appendix, cf.
expressions (A.4), (A.5) and (A.20). The underlined terms in (7.1) depend on
a cell size A.
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Solution to Eq. (7.1) satisfying the boundary conditions for a shell simply
supported on edges £ = 0, £ = Ly can be assumed in the form

Q1 (z,&,t) = Q7 (x)sin (7T§/L2) cos (wt) , (7.2)

where Q7(z) is a slowly-varying function in z satisfying boundary conditions
on edges © = 0, x = L; and w is a frequency of free micro-vibrations along
circumferential direction. Substituting (7.2) into (7.1), for sin(w&/Ls) # 0, we
arrive at equation for Q7(x)

Q; (z) {— (7/Ls)* (D2(h)?) (x) — <D““ (alh)2> (2)+

(7.3)
4 () <a:>] o

In order to obtain approximate formula of free vibration frequency w, the
known Galerkin method, cf. [46], can be applied to Eq. (7.3). Solution to Eq.
(7.3) satisfying the boundary conditions for a shell simply supported on edges
x =0,z = Ly is assumed as Qj(z) = Acos(mx/L;). We substitute this solution
into (7.3). For A # 0, the orthogonality condition of the resulting left-hand side of
Eq. (7.3) and function cos(mz/L;) has the following form

Ly

/ {— (7T/L2)2 <D1212(h)2> (z) — <D1111 (81h)2> ()+

+w? <,u (h)2> (:L‘):| cos® (mx/Ly) dz = 0,

Setting h = A~'h, from the above orthogonality condition, we obtain the
following formula for @

-1
Ly Ly

o= | A2 / <u(ﬁ)2>(x) cos? (rx/Ly) da / {— (m/L2)" N2 <Dl212<ﬁ)2>(x)+
- <D1111 (alh)2> (m)] cos’ (mx/Ly) du.
(7.4)

Free micro-vibrations in axial direction

The shell free micro-vibrations in axial direction are described by Eq. (5.35). For
a =n = 1, this equation has the following form
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(D**22(h)?)(x)020Q2 — <D1212 (31h)2> (2)Q2 — <M (h)2>($)Q2 =0,

x € Qa,

(7.5)

where averages (D12(91h)?), (D*%2(h)?), (u(h)?) are given in Appendix, cf.
expressions (A.6), (A.7) and (A.20). The underlined terms in (7.5) depend on
a microstructure length parameter \.

Solution to Eq. (7.5) satisfying the boundary conditions for a shell simply
supported on edges £ = 0, £ = Ly can be assumed in the form

Q2 (z,&,t) = Q5 (x) cos (7r§/L2) cos (wt) , (7.6)

where Q3(x) is a slowly-varying function in z satisfying boundary conditions on
edges © = 0, x = Ly and @ is a frequency of free micro-vibrations along axial
direction. Substituting (7.6) into (7.5), for cos(mw§/Ls) # 0, we arrive at equation

for Q3 ()

Q5 () {— (7/L2)" (D22(h)?) () = { D2 (311)° ) (2)+
(7.7)

+ () )] =0,

Solution to Eq. (7.7) satisfying the boundary conditions for a shell simply
supported on edges x = 0, x = Ly is assumed as Q5 = Bsin(mxz/L;). We substitute
this solution into (7.7). By means of Galerkin method, for B # 0, the following
orthogonality condition of the resulting left-hand side of Eq. (7.7) and function
sin(mx/Ly) is obtained

Ly

/ {— (7T/L2)2 <D2222(h)2> () — <D1212 (Glh)2> (2)+

0

i <u (h)2> (l‘):| sin® (rz/Ly) dz = 0,

Setting h = A~'h, from the above orthogonality condition, we derive the
following formula for w

Ly

L {_ (7/L2)" A2 (D22(R)?) () ~ ( D12 (9,h)?) (x)} sin? (r2/Ly) da

/\2

<,u(ﬁ)2> (z) sin® (rz/Ly) dz
(7.8)
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Transversal free micro-vibrations

Free transversal micro-vibrations of the shell under consideration are described by
Eq. (5.36). For A = N = 1, this equation has the following form

<BQQQ2(Q)2>(x)82222V + [2(3”22981@(1;) — 4<Blzl2 ((919)2>(:E)] OV +
—)y) AT gond) (7.9)

+ (B (009)*) @)V + (p(9)*) @)V =0,

where averages occurring in the above equations are given in Appendix, cf. (A.13),
(A.16)-(A.18) and (A.21). The underlined terms in (7.9) depend on a cell size A.

Solution to Eq. (7.9) satisfying the boundary conditions for a shell simply
supported on edges £ = 0, £ = Ly can be assumed in the form

V (z,&,t) = V* (x)sin (7€/ L) cos (wt) (7.10)

where V*(x) is a slowly-varying function in x satisfying boundary conditions on
edges © = 0, x = Ly and w is a frequency of free transversal micro-vibrations.
Substituting (7.10) into (7.9), for sin(w&/Ly) # 0, we arrive at equation for V*(x)

V()

(n/ L) (B2(g)?) () = 2 (w/ L) ((B"g00g) (2)+
(7.11)

-2(B"?(919)°) <x>) + (B (0u9)°) (@) = (1 (9)*) ()| =0,

Solution to Eq. (7.11) satisfying the boundary conditions for a shell simply
supported on edges © = 0, x = L; is assumed as V*(x) = Csin(mxz/L;). We
substitute this solution into (7.11). By means of Galerkin method, for C' # 0
the orthogonality condition of the resulting left-hand side of Eq. (7.11) and
function sin(mx/L,) is obtained. Setting g(-) = A*g(+), g(-) = A2g(-), from this
orthogonality condition, we derive the following formula for w

-1

w? = )\4/1<,u (§)2> () sin® (72 /Ly) d /1 |:(7T/L2)4 A(B??(9)?) (z)+

~2(n/22)" 2 (5" 50u5) (0) - 2 (B 02)") () +

+ <B1111 (8119)2> (x)} sin® (wz /L) dz.
(7.12)
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7.2.2 Numerical calculations

All calculations are made using Maple by Maplesoft software and all charts are
made in gnuplot.

For the shell under consideration, calculations are made for approximations
7n(x) of material properties distribution functions n(z) given by (6.6), (6.7), (6.10),
(6.16), i.e. for 7(x) = z/L, (x) = (z/L)? 1(z) = sin(rz/L), (x) = n = 0.5. We
recall that L = L,

Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
material properties described by functions applied in the problem analysed here
are shown in Fig. 7.1.

TN
T

Figure 7.1: Distribution of materials described by a) 7(x) = 2/L b) 7j(z) = (xz/L)?
¢) n(z) = sin(rz/L) d) 7(x) = n = 0.5, we recall that L = L

In the subsequent analysis, denotation L = L; will be used.
We define the following dimensionless free micro-vibration frequencies

(ﬁ>2 = % @)?, (7.13)
((z>2 - % @), (7.14)
(@) = % (@)%, (7.15)
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where frequencies @, w, w are determined by formulae (7.4), (7.8) and (7.12),

respectively.

Some numerical results calculated by formulae (7.13)-(7.15) are shown in Figs.

7.2-7.8.
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Figure 7.2: Diagrams of dimensionless free micro-vibration frequency €2 (7.13) versus ratios Eo/E;
and p2/p1, made for distribution functions 7(x) given by (6.7), (6.8), (6.10), (6.16) and for

A/L =0.01
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In Figs. 7.5-7.7 there are shown plots of dimensionless free micro-vibration
frequencies 2, €, Q given by (7.13)-(7.15), respectively, versus dimensionless
microstructure length parameter A\/L, made for Ey/FE, = 0.5, pa/p1 = 0.5,
d/A = 0.1 and for distribution functions of material properties 77(z) given by
7(z) = x/L, n(x) = (z/L)?, 7(x) = sin(rz/L), §(x) = n = 0.5. Note that diagram
for distribution function 7(x) = z/L is not visible because it is very similar to
diagram for distribution function 7(z) = n = 0.5.

550 — :
o (2) = 2/L
(@) = (x/L)’
450 n(z) = sin (TT/L) 7
400 n(r) = |

350
300
250
200
150
100

20 g

Figure 7.5: Diagrams of dimensionless free micro-vibration frequency € (7.13) versus
dimensionless microstructure length parameter \/L, made for distribution functions 7j(z) given
by (6.7), (6.8), (6.10), (6.16) and for Ey/Fy = 0.25, p2/p1 = 0.75
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0.01 0.02 003 004 005 006 007 008 009 010

Figure 7.6: Diagrams of dimensionless free micro-vibration frequency Q (7.14) versus
dimensionless microstructure length parameter A\/L, made for distribution functions 7j(z) given
by (6.7), (6.8), (6.10), (6.16) and for Ey/FEy = 0.25, pa/p1 = 0.75

120 . . — :
@) = /L
— ii(x) = (v/L)’
100 F ii(x) = sin (7z/L) |
()
80 .
60 ]
Q
40 ]
20 ]
O 1 L 1 L L L 1 1
0.00 002 003 004 005 006 007 008 009 010

Figure 7.7: Diagrams of dimensionless free micro-vibration frequency € (7.15) versus
dimensionless microstructure length parameter A/L, made for distribution functions 7j(x) given
by (6.7), (6.8), (6.10), (6.16) and for Ey/FEy = 0.25, pa/p1 = 0.75
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The cell-dependent higher free micro-vibration frequencies discussed here can
be also determined applying the tolerance model equations (5.6), (5.7). However,
equations (5.6), (5.7) are much more complicated than the microscopic tolerance
equations (5.34)-(5.36) of the combined model, which are independent of solutions
obtained in the framework of the asymptotic model derived in the first step of
combined modeling. Moreover, within the tolerance model governed by equations
(5.6), (5.7), these higher free vibration frequencies are always determined not
separately but together with the fundamental cell-independent lower free vibration
frequencies. In order to check this conformability, the transversal dimensionless
free micro-vibration frequency Q (7.15) obtained on the basis of micro-dynamic
equation (5.36) of the combined model (for A = N = 1) will be compared with
corresponding frequency §+ (6.57) derived in the framework of tolerance model
(5.6), (5.7).

We recall that calculations based on (6.57) were carried out for a simply
supported shell, for Poisson’s ratio v = 0.3, Ly/L; = 2/m, d/\ = 12/(1257),
A/Ly = 1/24 and for wave numbers o« = 57/Ly, f = w/Ly. In order to compare
(7.15) and (6.57), calculations based on (7.15) will be made for the same data.

In Fig. 7.8 there are shown diagrams of higher free vibration frequency € (7.15)
derived from the combined model versus both ratios Fy/E; and ps/p1, made for
distribution functions of material properties 77(x) described by (6.14)-(6.16).

— qlz) =7=0.5
— 7(z) = 0.6 - 0.2(2z/L — 1)*
7(x) = 0.6 — 0.2sin(mz/L)

T
B WYL
T e e S o T S T
ST U S SRR SRS,
“““““““‘“““ ““- YL e TN
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Figure 7.8: Diagrams of dimensionless free micro-vibration frequency € (7.15) versus ratios Eo/E;
and pa/p1, made for distribution functions 7(z) given by (6.14)-(6.16) and for A\/L = 1/24,
d/X\ =12/(1257)
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It can be observed that diagrams shown in Figs. 7.8 and 6.24 are nearly
identical. Maximum relative error between values of © (7.15) derived from the
combined model and values of €, (6.57) derived from the tolerance model for
distribution functions (6.14)-(6.16) are equal to 0.0178%, 0.0172%, 0.0176%,
respectively. In all cases, §+ (6.57) derived from the tolerance model was bigger
than Q (7.15) derived from the combined model.

7.2.3 Discussion of results and conclusions

On the basis of results shown in Figs. 7.2-7.8 the following conclusions can be
formulated:

e The values of dimensionless free micro-vibration frequencies €, Q) and O given
by (7.13)-(7.15) for all distribution functions under consideration increase
with the increase of ratio Ey/F; € [0.2,1.0], i.e. with the decreasing of
differences between elastic properties of the shell component materials, cf.
Figs. 7.2-7.4. Because the value of Young’s module F; for the stronger
material is fixed then these differences decrease if values of F, tend to value
of El.

e The values of dimensionless free micro-vibration frequencies €, Q) and Q given
by (7.13)-(7.15) for all distribution functions under consideration decrease
with the increase of ratio ps/p; € [0.2,1.0], i.e. with the decreasing of
differences between inertial properties of the shell component materials,
cf. Figs. 7.2-7.4. Because the value of Young’s module p; for the stronger
material is fixed then these differences decrease if values of py tend to value
of p1.

e For every distribution function under consideration, the free micro-vibration
frequency in circumferential direction is bigger than the free micro-vibration
frequency in axial direction, and free micro-vibration frequency in axial
direction is greater than the transversal free micro-vibration frequency, cf.
Figs. 7.2-7.4.

e The highest value of dimensionless free micro-vibration frequency Q (7.13)
is obtained for distribution function 7(x) = sin(nz/L) and for pair of ratios
(EQ/El = 10, pg/pl = 02), cf. Flg 7.2.

e The lowest value of dimensionless free micro-vibration frequency 2 (7.13)
is obtained for distribution function 7j(z) = (x/L)? and for pair of ratios
(EQ/El = 02, /)2/01 = 10), cf. Flg 7.2.
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e The highest value of dimensionless free micro-vibration frequency (7.14)
is obtained for distribution function 77(x) = sin(wz/L) and for pair of ratios
(Ey/Ey = 1.0, po/p1 = 0.2), cf. Fig. 7.3.

e The lowest value of dimensionless free micro-vibration frequency €2 (7.14)
is obtained for distribution function 7j(z) = (x/L)? and for pair of ratios
(EQ/EI = 02, ,Og/pl = 10), cf. Flg 7.3.

e The highest value of dimensionless free micro-vibration frequency € (7.15)
is obtained for distribution function 7j(z) = (x/L)? and for pair of ratios
(EQ/El = 10, ,02//)1 = 02), cf. Flg 7.4.

e The lowest value of dimensionless free micro-vibration frequency Q (7.15)
is obtained for distribution function 77(z) = (z/L)* and for pair of ratios
(EQ/El = 02, ,02/P1 = 10), cf. Flg 7.4.

e For fixed values of Ey/FE; and py/p;, the values of dimensionless free
micro-vibration frequencies Q, 2 and  given by (7.13)-(7.15), respectively,
are exponentially decreasing with increasing value of \/Ly, cf. Figs. 7.5-7.7.

e Validation of the models is confirmed by the very good agreement (relative
error is smaller than 1.78-107%) in the comparison of the higher free vibration
frequencies 2, (6.57) derived from the tolerance model and the higher free
vibration frequencies derived from the combined model 2 (7.15).

7.3. Space-boundary layer phenomena

In this subsection we shall investigate influence of a microstructure size on the
shape of displacement micro-fluctuations in the open cylindrical transversally
graded shell under consideration. The shell is described in detail in Subsection
6.1 and shown in Fig. 6.1. In this subsection, approximation h(z, z) of fluctuation
shape functions h(z) given by h(z,z) = Asin(2rz/)), z € A(z), z € Qa, will be
taken into account.

A special length-scale problem of harmonic micro-vibrations in axial direction
will be studied. The analysis will be based on Eq. (5.35). It will be shown that Eq.
(5.35) describes certain space-boundary layer phenomena strictly related to the

specific form of boundary conditions imposed on fluctuation amplitude Q2 (x, &, 1),
(x,&,t) e A x Ex L
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7.3.1 Analytical results

The problem of harmonic micro-vibrations in axial direction is studied on the basis
of Eq. (5.35). For a = n = 1 this equation reduces to Eq. (7.5). In order to make
the analysis more clear, below we recall this equation

(D™2(h)?) ()02 — (D (9:h)* ) (2)Q2 = (p ()" ) ()2 = 0.

x € Q.

(7.16)

The underlined terms in (7.16) depend on microstructure length parameter .

Setting Qo(x,&,t) = Qa(w, L€, 1), where € = £/Ly € [0,1], (2,t) € Q x 1,
we transform equation (7.16) to the following dimensionless form with respect to
dimensionless argument &

(L) (D22 (1)) (2)0002 = (D2 (@10)" ) (202 = (p (1)*) (@)Q2 = 0, (7.17)

In order to investigate the problem of harmonic micro-vibrations in axial
direction, we assume solution to Eq. (7.17) in the form

Qs (x,g, t> = Q" (x,g) cos (wt) (7.18)

with @ as a vibration frequency.
Under denotations

(Ls)? <D2112 (81h)2>
22 <D2222E2>
(o)
w7 =
200}
where h = A~'h, Eq. (7.17) yields
O Q" (%E) — 2 [1 — (%) 2] Q* (a:,f) =0, (7.20)

where w, is referred to as the cell-depending free micro-vibration frequency. It can

_ \2
be shown that for every x € [0, L;], averages <D2222h2>, <D2112 (alh)2>, <u <h) >

)

(7.19)

are greater than zero; hence k% > 0 and &2 > 0.
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Eq. (7.20) has a dimensionless form with respect to argument &. Argument
x € [0, L] in (7.20) can be treated as a parameter and Q*(m,g) is a slowly-varying
function in x. For every fixed z, Eq. (7.20) can be treated as ordinary differential
equation with respect to E having constant coefficients.

The boundary conditions are assumed in the form Q* (m,g = O) = QO (),
Qr (x,g = 1) = 0, where Qq is the known function slowly-varying in .

For an arbitrary but fixed z € [0, L], the solutions Q* (x,f) to equation
(7.20) depend on relations between vibrations frequencies @ and &,. It means that
micro-fluctuation amplitude Qg (z, 3 t> given by (7.18) also depends on relations

between @ and @,.
The following special cases of micro-vibrations can be taken into account

1. If & = 0 then
Q" (,€) = Qo (@) exp (1 ) (7.21)

and fluctuation amplitude QQ(x,E, t) is given by
Qx (,81) = Q" (2.€) = Qo (@) exp (- €) ; (7.22)

we deal with a stationary problem with strongly decaying
micro-fluctuactions.

L N2
2. If 0 < ©* < @? and setting k2 = k? [1 — (wi) } then

v v —

Q" (x,%) = @o (x) [exp (—kw 5) <1 — exp(—2l§:w)>_1 +
+ exp(/;?wg) (1 — exp(QIvfw)>_1}

and fluctuation amplitude Q2 (x,z, t> has the form



In this case micro-vibrations decay exponentially. It can be observed

that if 0 < @W? < &? then we can take into account the following approximate
form of solution (7.24)

Qa (,8:t) = Q" (.€) cos(et) =

y o (7.25)

= Qo (x) exp (—kwﬁ) cos (wt) .

From (7.25) it follows that micro-vibrations are strongly decaying near
the boundary £ = 0. It means that they can be treated as equal to zero
outside a certain narrow layer near boundary ¢ = 0. Thus, equation (7.16)
being a starting point in the micro-dynamic problem under consideration
makes it possible to investigate the boundary-layer phenomena.

. If @? = &? then
Q" (2.€) =Qo (@) (1-2) (7.26)
and fluctuation amplitude QQ (m,g, t> is given by
Q- (x,z, t) =Q* (m,g) cos (wt) = Qo (x) (1 - E) cos (wt); (7.27)
we deal with a linear decaying of micro-vibrations.
CIf@? > @2 and K2 = k2 {(5)2 — 1} + (nm)? then
Q* <LE,Z) =Qo(z) sin (/%(1 - E)) (sin(/?;))f1 (7.28)
and fluctuation amplitude QQ <x, £, t> has the form
3u (1) = @ () cosot) =
= Qo (x) sin <i% (1 - E)) sin ()" cos(wt);

micro-vibrations are not decaying, they oscillate.

(7.29)

Wi

y SN\ 2
CIf &? > @? and setting #* = k2 [<i> — 1] = (n7r)2 then the solution to

equation (7.20) does not exist; we obtain resonance microvibrations
with resonance frequencies

v2 2
W =w -

1+ (mf] . n=12... (7.30)
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It has to be emphasized that the above effect cannot be analysed in the
framework of asymptotic models commonly used for investigations of dynamic
problems for tolerance-periodic shells. It can be observed that within the

asymptotic models, equation (7.16) reduces to equation <D2112 (81h)2> Qs = 0,
which has only trivial solution Q) = 0.

7.3.2 Numerical calculations

Plots of solutions (" <x§) to Eq. (7.20) given by (7.21), (7.23), (7.26), (7.28) are
presented in Figs. 7.10-7.14. We recall that Q* (x, E) is a part of micro-fluctuation

amplitude Qs (m,g, t), ie. Qy (x,g, t> = Q* (xf) cos(wt).

Calculations are made for Poisson ratio v = 0.3, for fixed ratios Ls/L; = 2,
d/A = 0.1 and for various ratios ¢ = A\/L; € [0.01,0.1], Ey/E; € [0.2,1]. It can be
observed that under assumption Ly/L; = 2, values of ratio e = \/L; imply values
of ratio A/ Ly, i.e. \/Ly = \/(2L1) = 0.5¢.

All diagrams are made for approximations 77(z) of material properties
distribution functions 7(x) given by (6.6), (6.7), (6.10), (6.17), i.e. for n(x) = z/L,
n(z) = (/L)% 7n(z) = sin(rz/L), 7(z) = n = 0.5. We recall that L = L;.
Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
materials described by functions applied in this subsection are shown in Fig. 7.9.

TN
T

Figure 7.9: Distribution of materials described by a) 7j(z) = z/L b) 7j(x) = (z/L)?
¢) n(z) =sin(rz/L) d) 7(z) =n=0.5
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Plots

(@/w)? <1:

for the

exponentially

5 decaying
Q*((W0/w.)? < 1:(0/w,)? = 0.00,(0.65)%,(0.80)%) versus dimensionless coordinate
§=¢/Ly €[0,0.1] and plots for exponentially and linearly decaying solutions

(/@)% = 0.00, (0.65)2, (0.80)2, (0.90)?, (0.98)%, 1.00)

solutions

versus

dimensionless coordinate & = &¢/Ly € [0,1] are shown in Figs. 7.10, 7.11.
These diagrams are performed for ratios A\/Ls = 0.1, Ey/E; = 0.5, /L1 = 0.25.

Q*/Qo 05
0.4
0.3
0.2

0.1
0.0

ii(z) = 2/L —-
ii(z) = (x/L)* -
n(zx) =sin(7z/L) —-—
n(xr) =0.5 —

(@0/0.)? = (0.65)°
f(z) =z/L -
(x) = («/L)* o
n(x) =sin (7z/L) —-—
ilr) =05 —

0.00 0.02

/L2

Figure 7.10: Diagrams of decaying solutions Q*
£€=¢/Ly €[0,0.1], made for distribution functions 7(z) given by (6.7), (6.8), (6.10),
(6.16) and for A\/Ly = 0.1, E3/FE; = 0.5, z = 0.25L,
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Figure 7.11: Diagrams of decaying solutions Q* versus dimensionless coordinate £ = & /Ls €0,1],
made for distribution functions 7j(z) given by (6.7), (6.8), (6.10), (6.16) and for A\/Ly = 0.1,
EQ/EI = 05, Tr = 025L1
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Plots for the oscillating solutions QF (0/0:)? > 1: (0/w,)? = (1.1)?) versus
dimensionless coordinate § = £/Ly € [0,1] are presented in Fig. 7.12. These
diagrams are performed for ratios A\/L, = 0.1, Ey/E, = 0.5, x/L; = 0.25.

x)==z/L  — ij(r) = sin (rz/L) —
ix) = (z/L)" —  ii(z) =05 —

Q*/Qy O {}"EfL?

Figure 7.12: Diagrams of oscillating solutions Q* versus dimensionless coordinate
& =¢/Ly € ]0,1], made for distribution functions 7j(z) given by (6.7), (6.8), (6.10), (6.16) and for
)\/LQ = 01, E2/E1 = 05, xr = 025.[/1
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In Fig. 7.13 there are diagrams of solutions Q*(x,€) versus ratio

Ey/E, € 0.2,1] made

for

ALy = 0.1,

z/Ly = 0.25,

£=0.05 and for

(/i) < 1 (@0/@,)? = 0.00, (0.65)2, (0.80)2, (0.90)2, (0.98)2, 1.00).
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Figure 7.13: Diagrams of solutions Q* versus ratio Fo/FE7, made for distribution functions 7(x)
given by (6.7), (6.8), (6.10), (6.16) and for A/Ly = 0.1, /L, = 0.25, £/Ly = 0.05
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Plots of
performed for

in Fig. 7.14.
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Figure 7.14: Diagrams of solutions Q* versus ratio A\/Ly, made for distribution functions 7j(x)
given by (6.7), (6.8), (6.10), (6.16) and for Ey/Fy = 0.5, ©/L; = 0.25, {/La = 0.05
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7.3.3 Discussion of results and conclusions

Analysing the obtained analytical and numerical results some remarks can be
formulated:

7.4.

The shape of harmonic micro-vibrations with vibration frequency @
depends on relations between values of @ and a certain new additional
higher-order free vibration frequency w, depending on a cell size \. The
micro-vibrations can decay exponentially and very strongly near
the boundary ¢ = £/L, = 0 and can be treated as equal to zero outside a
certain narrow layer near this boundary, cf. solutions (7.22), (7.24), (7.25)
and Figs. 7.10, 7.11. The problem with strongly decaying micro-vibrations
near the boundary & = ¢ /Ly = 0 is referred to the space-boundary-layer
phenomena. They can decay linearly, cf. solutions (7.27) and
Fig. 7.11. Certain wvalues of w cause a mnon-decayed form of
micro-vibrations (micro-vibrations oscillate), cf. solution (7.29)
and Fig. 7.12, for certain values of w we deal with resonance
micro-vibrations, cf (7.30).

From results presented in Figs. 7.10, 7.11 it follows that the mildest decrease
in solutions Q* takes place for distribution function 7(z) = 0.5, slightly
stronger decrease is observed for 1(z) = x/L, the even stronger decrease
takes place for n(z) = sin(rz/L) and the strongest one is observed for

i(x) = (z/L)

From results shown in Fig. 7.13 it follows that solutions Q* are almost
constant for distribution function 7(x) = x/L, in contrast to distribution
function 7(z) = 0.5, for which solutions Q* decrease with the increase of
Ey/E;, and in contrast to distribution functions 7(x) = sin(wz/L) and
7(z) = (x/L)%, for which solutions Q* increase with the increase of Ey/E}.

Analysing results presented in Fig. 7.14 we can observe that the solutions Q*
increase with the increase of parameter A/Ls for all distribution functions
and for all analysed values of w/w,.

Wave propagation problem

In this subsection we shall analyse the long wave propagation problem for the
tolerance-periodic shell under consideration. The shell is described in detail in
Subsection 6.1 and shown in Fig. 6.1.

Let the considered shell be unbounded along the axial &-coordinate. We
deal with long waves if condition A\/L < 1 holds, where \ is the midsurface
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length parameter and L is the wavelength. The waves related to micro-fluctuation
amplitude Qs(x, &, t), (z,&,t) € Q x = x 1, are taken into account. Hence, equation
(5.35) describing the shell’s micro-dynamics in an axial direction will be applied.
For a = n = 1, this equation reduces to Eq. (7.16).

7.4.1 Analytical results

The problem of wave propagation in axial direction is studied on the basis of Eq.
(7.16). We look for solution to (7.16) in the form Qs (,§,t) = F (z,§ — ct), where
c is the wave propagation velocity. Setting h = A1, from (7.16) we obtain

62

b =0 (7.31)

(¢ — &) OaF +

where, for an arbitrary but fixed x € €2, speeds ¢ and ¢ are defined by

&= @ (7.32)

()

= <D2m (alh)2>. (7.33)

o
It can be observed that argument x in (7.31) can be treated as a parameter
and F (z,-), z € €, is a slowly-varying function in z. Equation (7.31) implies the
following special cases of wave propagation in the tolerance-periodic shell under
consideration:

1. sinusoidal waves if ¢ > ¢,
2. exponential waves if ¢ < ¢,
3. degenerate case if ¢ = ¢.

The above effect cannot be analysed in the framework of asymptotic models.

In order to determine the dispersion relation for the case 1, let us substitute to
(7.16) solution of the form Qs (z,&,t) = Af (z)sin (k (€ — ct)), k = 2 /L, where
f (z) is the known slowly-varying function, L and k are the wavelength and the
wave number, respectively, A is an arbitrary constant. It is assumed that L > \.
The nontrivial solution (A # 0) exists only if

F@) (kNP2 = (kN2 & — 52} —0, (7.34)
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where under assumption that L > A, the following condition holds
kX =27)\/L < 1.

The above equation describes the effect of dispersion. It can be seen that for
kX — 0 the dispersion effect disappears. From (7.34) it follows that for a fixed
x € Q such that f(z) # 0, the dispersive long waves related to micro-fluctuation
amplitude Qs (z,&,t) can propagate across the unbounded tolerance-periodic shell
under consideration with propagation speed

(7.35)

depending on microstructure size \.

7.4.2 Numerical calculations

All calculations are made using Maple by Maplesoft software and all charts are
made in gnuplot.

For the shell under consideration, calculations are made for approximations
n(z) of distribution functions of material properties n(x) given by (6.6),
(6.7), (6.11), (6.16), i.e. for 7(x)==xz/L, n(z) = (z/L)?, 7(z) = cos(rz/(2L)),
n(x) =n=0.5. We recall L = L.

Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
material properties described by functions applied in the problem analyzed here
are shown in Fig. 7.15.

TN
e

Figure 7.15: Distribution of materials described by a) 7(z) = x/L b) 7j(x) = (z/L)?
) ii(w) = cos(mz/(2L)) ) ij(z) = 1 = 0.5
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We define the following dimensionless wave propagation velocity

2
C* = (=) p c? (7.36)
E,
where speed ¢ is determined by formulae (7.35).
Calculations are made for fixed ratio x/L; = 0.5, for dimensionless wave

number kA = 27A/L € [0.01,0.1] and for Ey/E; € [0.2,1.0], p2/p1 € [0.2,1.0].

From expressions (7.36) it follows that all plots are made under assumption
v = const, 1 = const, p; = const.

In Figs. 7.16-7.18 there are presented diagrams of dimensionless wave
propagation velocity C' given by (7.36) versus ratio ps/p1, made for distribution
functions of material properties 7(x) described by (6.6), (6.7), (6.11), (6.16) and
for Fy/Ey = {0.25,0.5,0.75}, kA = 0.02 7.
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Figure 7.16: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio pa/p1,
made for distribution functions 7(z) given by (6.7), (6.8), (6.11), (6.16) and for Es/E; = 0.25,
x/L1 =05, kA=0.02 7
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Figure 7.17: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio pa/p1,
made for distribution functions 77(z) given by (6.7), (6.8), (6.11), (6.16) and for Ey/E; = 0.50,
x/Ly =05, kA=0.02 7
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Figure 7.18: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio ps/p1,
made for distribution functions 77(z) given by (6.7), (6.8), (6.11), (6.16) and for Ey/E; = 0.75,
w/Ly = 0.5, kA =0.02 7
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In Figs. 7.19-7.21 there are presented diagrams of dimensionless wave
propagation velocity C' (7.36) versus ratio Es/E;, made for distribution functions

(6.6), (6.7), (6.11), (6.16) and for p/p; = {0.25,0.5,0.75}, kA = 0.02 7.
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Figure 7.19: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio Es/FE,
made for distribution functions 7j(z) given by (6.7), (6.8), (6.11), (6.16) and for ps/p; = 0.25,
2/Ly = 0.5, kA = 0.02 7
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Figure 7.20: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio Es/E1,
made for distribution functions 7(z) given by (6.7), (6.8), (6.11), (6.16) and for p2/p1 = 0.50,
x/L1 =05, kA=0.02 7
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Figure 7.21: Diagrams of dimensionless wave propagation velocity C' (7.36) versus ratio Es/Eq,
made for distribution functions 7(z) given by (6.7), (6.8), (6.11), (6.16) and for ps/p; = 0.75,

x/Ly =05, kA=0.02 7
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In Fig. 7.22 there are presented diagrams of dimensionless wave propagation
velocity C' given by (7.36) versus dimensionless wave number kA, made for
distribution functions of material properties 7j(z) described by (6.6), (6.7), (6.11),
(6.16) and for po/py = 0.25, Ey/E; = 0.25.
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Figure 7.22: Diagrams of dimensionless wave propagation velocity C (7.36) versus dimensionless
wave number kA, made for distribution functions 7(z) given by (6.7), (6.8), (6.11), (6.16) and
for x/L; = 0.5, pa/p1 = 0.25, E5/E; = 0.25

7.4.3 Discussion of results and conclusions

It was shown that the tolerance-periodic heterogeneity of the shell under
consideration leads to exponential waves and to dispersion effects, which
cannot be analysed in the framework of the asymptotic models for
pertodic or tolerance-periodic shells. Moreover, the new wave propagation
speed depending on the microstructure size has been obtained, cf. formula
(7.35).

On the basis of results shown in Figs. 7.16-7.22, the following conclusions can
be formulated:

e Values of dimensionless wave propagation velocity C' (7.36) decrease with the
increasing of ratio ps/p; € [0.2,1.0], i.e. with the decreasing of differences
between inertial properties of the component materials, cf. Figs. 7.16-7.18.
Because the value of mass density p; for the stronger material is fixed then
these differences decrease if values of p, tend to value of p;.
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e Values of dimensionless wave propagation velocity C' (7.36) increase with the
increasing of ratio Ey/F; € [0.2,1.0], i.e. with the decreasing of differences
between elastic properties of the shell component materials, cf. Fig. 7.19-7.21.
Because the value of Young’s module E; for the stronger material is fixed
then these differences decrease if values of E5 tend to value of E;.

e Values of dimensionless speed C (7.36) decrease with the increase of
dimensionless wave number kA, i.e. with the decreasing of differences
between microstructure length parameter A and the wavelength L, cf. Fig.
7.21. The strongest decrease in the dimensionless speed C takes place for
kX € [0.01,0.03].

e The highest values of dimensionless speed C', cf. Figs. 7.16-7.21, are obtained
for pair of ratios (Fy/E; = 1.0,ps/p1 = 0.25), i.e. for a tolerance-periodic
shell with a very strong inertial heterogeneity and with elastic homogeneous
structure, and for distribution function 7(x) = (x/L)?. The smallest values
of this speed is obtained for pair of ratios (Fy/E; = 0.25, p2/p1 = 1.0), i.e. for
a tolerance-periodic shell with a very strong elastic heterogeneity and with
inertial homogeneous structure, and for distribution function 7(z) = (z/L)%.

e From results shown in Figs. 7.16-7.18 it follows that for values of ratio ps/p;
smaller than 0.8, Fig. 7.16, 0.87, Fig. 7.17, 0.94, Fig. 7.18, the values of
dimensionless wave propagation speed C' (7.36) are greatest for distribution
function 7j(z) = (z/L)?% slightly smaller for 7(z) = 0.5, even smaller for
n(x) = x/L and the smallest for 7j(x) = cos(mz/(2L)). On the other hand,
for values of ratio ps/p; greater than 0.8, Fig. 7.16, 0.87, Fig. 7.17, 0.94,
Fig. 7.18, the order is reversed, i.e. the values of dimensionless velocity C
(7.36) are greatest for distribution function 7(x) = cos(mz/(2L)), slightly
smaller for 77(z) = x/L, even smaller for 7(x) = 0.5 and the smallest for

iile) = (¢/L)".

7.5. Special length-scale initial value problem

Object of considerations is a thin shell strip with span L = L; along the
circumferential x = x!-coordinate and with a constant thickness. The shell strip
has a tolerance-periodic microstructure and a functionally graded macrostructure
along its span as well as a constant structure in the axial direction. It assumed that
the shell strip is made of two elastic isotropic materials, which are perfectly bonded
on interfaces and densely, tolerance-periodically distributed along z-coordinate. A
fragment of such a shell strip is shown in Fig. 6.1, where in the problem under
consideration length dimension L of the shell along ¢ = z2-coordinate is assumed
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to be infinite. The basic cell, properties of component materials and the shell
rigidities are described in detail in Subsection 6.1.

The influence of microstructure length parameter A on the character of
displacement micro-fluctuations will be analysed in a certain special initial value
problem. This problem will be treated as independent of the &-coordinate.

The analysis will be based on Eq. (5.34). For a = n = 1 and under assumption
that the problem is independent of argument £ € =, equation (5.34) reduces to the
following form

<D““(81h)2> )Qu(x,) — (u(h)?) (2)0s(2,t) =0, (m,6) € Qx1  (7.37)

Argument = € Q in (7.37) can be treated as a parameter. For an arbitrary but
fixed x, Eq. (7.37) can be treated as ordinary differential equation with respect to
argument ¢ having constant coefficients.

Introducing non-dimensional time coordinate 7 = ¢/T, where T is a certain
time constant, defining function ¢ = ¢ (z,7) = @Qi(x,T7) and introducing
parameter x? = (I/\)?, where [ is a certain length parameter given by

2= (D" (@h)) 7 <N<E)2>_1 (7.38)

with h = A~'h (I is independent of a cell size \) as well as denoting 0, = 9/0;,
we shall transform equation (7.37) to the dimensionless form with respect to time
argument 7

0r+q(z,7) + X*q(z,7) = 0. (7.39)

For an arbitrary but fixed z € Q, coefficient x? in (7.39) is constant.

We shall assume the initial conditions in the form ¢(z,0) = 1, d.q(z,0) = 0.
Moreover the considerations will be restricted to the time interval 7 € [0, 7/2].
For an arbitrary but fixed x € €2 and under initial conditions given above as well
as for 7 € [0, 7/2], the solutions to equation (7.39) are given in Fig. 7.23. These
solutions illustrate the influence of microstructure length parameter \
on the character of micro-fluctuations in the circumferential direction.
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Figure 7.23: Diagrams of solutions to equation (7.39) versus dimensionless time coordinate T,
made for different interrelations between length parameters [ and A\; x = [/\

On the basis of result shown in Fig. 7.23, the important conclusions are:

e if 0 < x < 1,1ie. [l < A, then the displacement micro-fluctuations decrease
monotonically and very softly; they don’t take the zero-value in the time
interval under consideration,

o if y =1, ie. [ = A, then the micro-fluctuations decay monotonically in the
time interval under consideration; for 7 = /2 they are equal to zero,

e if x > 1, ie. 1 > A, then solutions to equation (7.38) decay monotonically
and strongly in a certain subinterval of the time interval under consideration,
and then the absolute values of these solutions increase monotonically in the
remaining part of this time interval.

At the end of this subsection, the influence of differences between elastic and
inertial properties of the component materials on the length parameter [ will be
studied.

We introduce dimensionless length parameter

pi(l =12,
Lg)? = 5— 212 A4
(Lo = 2 (7.40)
where [? is given by (7.38).

Calculations are made for Poisson ratio v = 0.3, for fixed ratios d/L = 0.005,
x/L = 0.25, for various ratios Fy/E; € [0.2,1] and py/p; € [0.2, 1] and for material
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properties distribution functions given by (6.6), (6.7), (6.9) and (6.16), i.e. for
7(@) = /L, () = (¢/L), iitz) = (/L)%, 7(z) = 7 = 0.5.

Diagrams of dimensionless length parameter Ly (7.40) versus both ratios Fy/ Ey
and p2/p; made for distribution functions 7j(z) given by (6.6), (6.7), (6.9) and (6.16)
are presented in Fig. 7.24.
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Figure 7.24: Diagrams of dimensionless length parameter Ly (7.40) versus both ratios E2/E; and
p2/p1, made for distribution functions 7j(z) given by (6.6), (6.7), (6.9), (6.16) and for d/L = 0.005,
z/L=1/4

From results shown in Fig. 7.24 it follows that dimensionless length parameter
Ly (7.40) decreases with the increase of ratio ps/pi, i.e. with the decrease of
differences between inertial properties of the component materials, but it increases
with the increasing of ratio Fy/FE), i.e. with the decreasing of differences between
elastic properties of the component materials.

The highest value of dimensionless length parameter L, (7.40) is obtained
for pair of ratios (Ey/Ey = 1,p2/p1 = 0.2), i.e. for a tolerance-periodic shell
with a very strong inertial heterogeneity and with elastic homogeneous structure,
and for distribution function 7j(z) = (z/L)3. The smallest value of this length
parameter is obtained for pair of ratios (Fy/E; = 0.2,p2/p1 = 1), ie. for a
tolerance-periodic shell with a very strong elastic heterogeneity and with inertial
homogeneous structure, and also for distribution function 7j(z) = (z/L)3.

It must be emphasized that the initial value problem discussed above
cannot be described in the framework of the asymptotic models
commonly used for investigations of mechanical problems for periodic
or tolerance-periodic shells.
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8. Final remarks and conclusions

The objects of considerations are thin linearly elastic Kirchhoff-Love-type
open circular cylindrical shells having a functionally graded macrostructure
and a tolerance-periodic microstructure in circumferential direction. On the
microscopic level, the shells consist of a very large number of separated, small
elements regularly distributed along circumferential direction and perfectly bonded
to each other (or to the homogeneous matrix). These elements, called cells, are
treated as thin shells. It is assumed that the adjacent cells are nearly identical
(i.e. they have nearly the same geometrical, elastic and inertial properties), but
the distant elements can be very different. The length dimension of a
cell in circumferential direction, called the microstructure length parameter,
is assumed to be very large compared with the maximum shell thickness and
very small as compared to the midsurface curvature radius as well as the length
dimension of the shell midsurface in the direction of tolerant periodicity. Examples
of such shells are shown in Figs. 4.1 and 4.2. At the same time, the shells
have constant structure in axial direction. On the microscopic level, the
geometrical, elastic and inertial properties of these shells are determined by highly
oscillating, non-continuous and tolerance-periodic functions in circumferential
direction. On the other hand, on the macroscopic level, the averaged properties
of the shells are described by functions being continuous and slowly varying
along circumferential direction. It means that the tolerance-periodic shells under
consideration can be treated as made of functionally graded materials (FGM),
cf. Suresh and Mortensen [110], and called functionally graded shells. Moreover,
since macroscopic properties of the shells are graded in direction normal to
interfaces between constituents, this gradation is referred to as the transversal
gradation.

The subject-matter of this doctoral thesis is the analytical modelling of
dynamic problems for the shells under consideration and the study of the effect
of a cell size on the macroscopic and microscopic shell behaviour (the length-scale
effect).

Dynamic behaviour of such shells are described by Euler-Lagrange equations
(4.9) generated by Lagrange function (4.8). The explicit form of (4.9), given by
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(4.10), coincides with the known governing equations of Kirchhoff-Love theory for
thin elastic shells. For tolerance-periodic shells, coefficients of these equations are
highly oscillating, non-continuous and tolerance-periodic functions. That is why
the direct application of equations (4.10) to investigations of specific problems is
non-effective even using computational methods.

The first aim of this dissertation was to formulate and discuss three
new mathematical averaged models with continuously slowly-varying
coefficients constituting a proper tool for the analysis of selected
dynamaic problems in the thin cylindrical shells with a tolerance-periodic
maicrostructure and a transversally graded macrostructure in the
circumferential direction. Moreover, two from these models take into
account the effect of a microstructure size on the dynamic shell
behaviour.

This aim has been realized by means of applying the tolerance,
consistent asymptotic and combined asymptotic-tolerance modelling
procedures, cf. [164] to the starting Euler-Lagrange equations (4.9),
which explicit form (4.10) coincides with the known governing equations
of Kirchhoff-Love theory for thin elastic shells.

The results can be summarized by the following remarks and
conclusions:

a) The mew mathematical non-asymptotic tolerance model for the
analysis of selected dynamic problems in the functionally graded shells
under consideration has been formulated by applying the tolerance modelling
procedure discussed by Wozniak in a large number of contributions and
summarized in [164, 166, 168.]. The tolerance approach is based on the
notion of tolerance relations between points and real numbers related to
the accuracy of the performed measurements and calculations. Tolerance
relations are determined by tolerance parameters. Other fundamental
concepts of this modelling technique are those of slowly-varying
functions, tolerance-periodic functions, fluctuation shape functions
and averaging operation. Following monographs by Wozniak et al. (eds.)
[164] and Ostrowski [90], the definitions of these basic notions were outlined
in Chapter 3 of this dissertation. The fundamental assumption imposed
on the lagrangian under consideration in the framework of the tolerance
averaging approach is called the micro-macro decomposition. It states
that the displacement fields occurring in this lagrangian have to be the
tolerance-periodic functions in the direction of tolerant periodicity. Hence,
they can be decomposed into unknown averaged displacements being
slowly-varying functions and fluctuations represented by finite
sertes of products of the known highly oscillating continuous
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tolerance-periodic fluctuation shape functions and unknown
slowly-varying fluctuation amplitudes. The second fundamental
assumption is called the tolerance averaging approximation, cf. (3.6).
This assumption makes it possible to neglect terms of an order of tolerance
parameters. The tolerance modelling technique used for Euler-Lagrange
equations (4.9) is realized in two steps. The first step is based on
the tolerance averaging of lagrangian (4.8) under micro-macro
decomposition defined by (5.1). This averaging is realized by applying the
averaging operation (3.5) and the tolerance averaging approximation
(3.6). The resulting tolerance-averaged form of lagrangian (4.8) is given by
(5.3). In the second step, applying the principle of stationary action to
the tolerance-averaged action functional (5.4) determined by means
of averaged lagrangian (5.3), we arrive at Euler-Lagrange equations (5.5).
After combining (5.5) with (5.3), we obtain finally the explicit form of the
tolerance model equations for the transversally graded shells under
constderation. These equations are written in the form of constitutive
relations (5.6) and dynamic balance equations (5.7). Unknowns of this model
are macrodisplacements u’, w® and fluctuation amplitudes U, W4,
a=1,2....n, A =12 ...,N. These unknowns must be slowly-varying
functions in the tolerant periodicity direction, i.e. they have to satisfy
conditions (3.1) for the pertinent tolerance parameters. Contrary to starting
equations (4.10) with coefficients highly oscillating, non-continuous and
tolerance-periodic along z-coordinate parametrizing the shell midsurface
in circumferential direction, the obtained tolerance model equations
have coefficients which are continuous and slowly-varying in
the direction of tolerant periodicity. Moreover, some of these
coefficients depend on microstructure length parameter \. It means
that the biggest advantage of the proposed tolerance model is that
it describes the effect of the cell size on the global shell behaviour.
Moreover, this effect can be analysed not only in dynamic but also
in stationary shell problems. It is worth mentioning that the tolerance
equations proposed in this dissertation are a certain generalization of those
derived and discussed in Tomczyk and Szczerba [146], which have been
formulated under extra assumption 1 + A/r &~ 1, where A and r stand
respectively for the microstructure length parameter and the midsurface
curvature radius. It means, that in the model equations presented here, terms
of an order O ()\ / 7‘) are not neglected and hence they contain a bigger number
of terms depending on the microstructure size.

The new mathematical consistent asymptotic model for the analysis
of selected dynamic problems in the transversally graded shells under
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consideration have been formulated by applying the new consistent
asymptotic modelling procedure given in Wozniak et al. (eds.) [164].
The fundamental assumption imposed on the lagrangian under consideration
in the framework of this approach is called the consistent asymptotic
decomposition. It states that the displacement fields occurring in the
lagrangian have to be replaced by families of fields depending on parameter
e € (0,1] and defined in an arbitrary cell. These families of displacements
are decomposed into averaged part described by unknown functions
being continuously bounded in the tolerant periodicity direction and
highly oscillating part depending on e. This highly oscillating part is
represented by the known highly oscillating fluctuation shape functions
multiplied by unknown functions being continuously bounded in the
direction of tolerant periodicity. Asymptotic modelling procedure used
for Euler-Lagrange equations (4.9) is realized in two steps. The first
step is the consistent asymptotic averaging of lagrangian (4.9)
under consistent asymptotic decomposition defined by (5.8). The
resulting asymptotically averaged form of lagrangian (4.9) is given by
(5.12). In the second step, applying the principle of stationary action to
the consistent asymptotic action functional (5.13) defined by means of
averaged lagrangian (5.12), we arrive at Euler-Lagrange equations (5.14).
After combining (5.14) with (5.12), we obtain finally the explicit form of
the consistent asymptotic model equations for the shells under
consideration given by (5.15). Similarly as in the tolerance model,
unknowns of the asymptotic one are called macrodisplacements and
fluctuation amplitudes. However, these unknowns are not assumed to
be slowly-varying functions satisfying conditions (3.1). They are assumed to
be continuous and bounded in Q = [0, L] together with their appropriate
derivatives. Fluctuation amplitudes are governed by the system of linear
algebraic equations (5.15)34 and can be always eliminated from the system
of governing equations (5.15) by means of (5.16). Hence, the unknowns of
final asymptotic model equations (5.18) are only macrodisplacements.
The resulting equations have to be considered together with decomposition
(5.19). Coefficients in the asymptotic equations are continuously
slowly variable in x, but they are independent of the microstructure
cell size. Thus, contrary to the tolerance model, the consistent
asymptotic one is not able to describe the length-scale effect on
the owverall shell dynamics. The great advantage of this model is
that the effective moduli (5.17) of the shell can be obtained without
specification of the periodic cell problems.
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c¢) The new mathematical combined asymptotic-tolerance model for
the analysis of selected dynamic problems in the functionally graded
shells under consideration has been formulated by applying the
combined modelling procedure given in Wozniak et al. (eds.) [164].
The combined modelling technique is realized in two steps. The first
step is based on the consistent asymptotic procedure (outlined
above), which leads from starting equations (4.10) to the Euler-Lagrange
equations (5.18) with continuous and slowly-varying coefficients being
independent of the microstructure cell size. Equations (5.18) without the
external forces are rewritten as (5.20). Equations (5.20) are referred to
as the macroscopic model equations. Assuming that in the framework
of the macroscopic model the solutions (5.21) to the problem under
consideration are known, we can pass to the second step. The second
step is based on the tolerance averaging of starting lagrangian
(4.8) under so-called superimposed decomposition defined by
(5.22). This extra micro-macro decomposition superimposed on the
known solutions obtained within the macroscopic model contains the
new known, tolerance-periodic, continuous and highly oscillating
fluctuation shape functions and new slowly-varying unknowns
termed fluctuation amplitudes. Then, applying the principle of
stationary action to the tolerance-averaged action functional (5.28) defined
by means of the tolerance-averaged lagrangian (5.27) we arrive at the
Euler-Lagrange equations (5.29) and their explicit form (5.30), (5.31)
with continuous and slowly-varying wn x coefficients depending also
on the cell size. Hence, the model obtained in the second step is
referred to as the superimposed microscopic model. Summarizing
the results we conclude that the equations of combined model
for the tolerance-periodic shells under consideration consist of
macroscopic model equations (5.20) formulated by means of
the consistent asymptotic procedure and having continuous and
slowly changing coefficients independent of a microstructure length
and of superimposed microscopic model equations (5.30), (5.31)
derived by applying the tolerance modelling technique and having
continuous and slowly-varying coefficients depending also on a cell
sitze. Both the models are combined together under assumption that
in the framework of the macroscopic model the solutions (5.21) to
the problem under consideration are known. It was shown that under
special condition tmposed on the fluctuation shape functions, the combined
model makes it possible to separate the macroscopic description
of some special problems from their microscopic description; see
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equations (5.34)-(5.36). Thus, an important advantage of this model
is that it allows us to study micro-dynamics of the shells under
constderation independently of their macro-dynamsics. Moreover,
micro-dynamic equations (5.34)-(5.36) describe certain time-boundary-layer
and space-boundary-layer phenomena strictly related to the specific form of
initial and boundary conditions imposed on the unknown micro-fluctuation
amplitudes.

The governing equations of all models derived in this dissertation are
uniquely determined by the continuous, highly oscillating, tolerance-periodic
fluctuations shape functions describing oscillations inside a cell. These
functions are assumed to be known in every problem under consideration.
They can be obtained as exact or approximate solutions to certain periodic
eigenvalue problems describing free periodic vibrations of the cell. It means
that they represent either the principal modes of free periodic vibrations
of the cell or physically reasonable approximation of these modes. These
functions can also be treated as the shape functions resulting from the
periodic discretization of the cell using for example the finite element method.
The choice of these functions can be also based on the experience or intuition
of the researcher.

The number and form of boundary conditions for unknown averaged variables
(i.e. macrodisplacements) of all models formulated here are the same as in
the classical shell theory governed by equations (4.10). Boundary conditions
for unknown fluctuation amplitudes should be defined only on boundaries

£ZO7£:L2-

Solutions to selected initial/boundary value problems formulated in the
framework of the tolerance model and the microscopic part of combined
model have a physical sense only if the physical reliability conditions hold
for the pertinent tolerance parameters. These conditions state that unknowns
of the aforementioned models have to be slowly-varying functions in direction
of tolerance-periodicity. Moreover, these conditions can be also used for the a
posteriori evaluation of tolerance parameters and hence, for the verification
of the physical reliability of the obtained solutions.

The second aim of this doctoral thesis was to apply the tolerance

and

asymptotic models derived here to evaluation of the length-scale

effect in some special problems dealing with free wvibrations of the

tolerance-periodic shells under consideration. The objects of considerations
were the simply supported shell strip of infinite axial length dimension and the
open simply supported shell of finite circumferential and axial length dimensions.

150



The shells have constant thickness and are composed of two homogeneous,
elastic, isotropic materials densely and tolerance-periodically distributed along the
circumferential direction. The materials are perfectly bonded on interfaces. The
shell structure is constant in the axial direction, cf. Fig. 6.1. On the macroscopic
level the shells have transversally graded macrostructure in circumferential
direction.

Many functions describing the distribution of material properties have been
taken into account, cf. expressions (6.6)-(6.16) and Fig. 6.3.

The analysed free vibration problems were described by equations with
coefficients continuous and slowly-varying in z. It was difficult to find analytical
solutions to these equations. Thus, to obtain approximate formulas of free vibration
frequencies, the known Ritz variational method was applied.

Some analytical results derived in the framework of the tolerance and
asymptotic models were compared with numerical those obtained using the
commercial computer software Ansys based on the finite element methods.

The most timportant conclusions are:

a) Contrary to asymptotic model, the tolerance one describes the
effect of a cell size on the dynamic behaviour of the functionally
graded shells under consideration. In the framework of the
tolerance model, not only the fundamental lower, but also the new
additional higher-order free vibration frequencies can be derived
and analysed. The higher free wvibration frequencies depend on
a cell size and hence cannot be determined applying asymptotic
models commonly used for investigations of the microstructured
shell dynamics. In the special dynamic problems discussed here, the
cell-dependent higher-order free vibration frequencies are expressed
by means of formulae (6.29) for a shell strip and (6.53) for the shell with
finite length dimensions.

b) From both the analytical and computational results it follows that the
differences between the fundamental lower free vibration frequencies derived
from the tolerance model and free vibration frequencies obtained from the
asymptotic one are negligibly small. Thus, the effect of the microstructure
size on the fundamental lower free vibration frequencies of the shells under
constderation can be neglected. Hence, the asymptotic model being more
simple than the tolerance non-asymptotic one is sufficient from the
point of view of calculations made for the dynamic problems under
consideration.

c) Values of the free vibration frequencies derived from the tolerance or
asymptotic models increase with decreasing differences between elastic
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properties of the shell component materials and decrease with decreasing
differences between inertial properties of the shell component materials.
Values of these frequencies increase linearly with decreasing of differences
between shell thickness and the microstructure length parameter A. Values
of the cell-dependent higher free vibration frequencies decrease with the
decreasing of differences between a cell size A and the length dimension
L = Ly of the shell midsurface in the tolerant periodicity direction. For
every distribution function under consideration and for A\/L € [0.01,0.1],
these values decrease very strongly for A\/L € [0.01,0.03].

d) The comparison of the lower free vibration frequencies derived from the
tolerance or asymptotic models with those obtained using the commercial
computer software Ansys has given a very good agreement between these
results. Good agreement confirms the validation of the models proposed here.

The third aim was to apply the microscopic equations (5.34)-(5.36)
derived in the second step of the combined modelling to the analysis
of length-scale effect in some special problems dealing with the
shell maicro-vibrations and with the long wave propagation related
to micro-fluctuations of the shell displacements. The open shell having
constant thickness and composed of two homogeneous, elastic, isotropic materials
densely and tolerance-periodically distributed along the circumferential direction
is object of considerations, cf. Fig. 6.1. The component materials are perfectly
bonded on interfaces. The shell structure is constant in an axial direction. On
the macroscopic level the shells have transversally graded macrostructure in
circumferential direction.

It was shown that the combined model for the tolerance-periodic
shells considered here, under special conditions imposed on the
fluctuation shape functions, makes it possible to analyse selected
problems of the shell micro-dynamics independently of the shell
macro-dynamics. This 1is the greatest advantage of the proposed
combined model. Note, that the problems mentioned above cannot be analysed
in the framework of the asymptotic models commonly used for investigations
of dynamics of periodic/tolerance-periodic cylindrical shells. Micro-dynamic
equations (5.34)-(5.36) obtained in the second step of the combined modelling
are independent of solutions obtained in the framework of the macroscopic (i.e.
asymptotic) model formulated in the first step of the combined modelling. We
recall that coefficients of micro-dynamic equations (5.34)-(5.36) are described by
continuous and slowly-varying functions with respect to argument .

The results obtained on the basis of micro-dynamic equations
(5.34)-(5.36) can be summarized by the following remarks and
conclusions:
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a)

For the transversally graded shell under consideration simply supported on
all four edges, the cell-dependent free micro-vibration frequencies
(7.4), (7.8), (7.12) in circumferential, axial and normal directions,
respectively, have been derived on the basis of micro-dynamic equations
(5.34)-(5.36) and by applying the known approximate Galerkin method.
These frequencies were obtained independently of the cell-independent
free macro-vibration frequencies. The dependence of these frequencies
on the microstructure length parameter A was studied. The influence of
differences between elastic and inertial properties of the component materials
on these frequencies was investigated in detail. Linear, parabolic, sinus
and constant (i.e. periodic) distributions of material properties were taken
into account. The highest values of the free micro-vibration frequencies in
circumferential and axial directions were obtained for the sinus distribution
and for a shell with elastic homogeneous structure and a very strong inertial
heterogeneity, while the lowest values were obtained for parabolic distribution
and for a shell having inertial homogeneous structure and a very strong elastic
inhomogeneity. The highest value of the transversal free micro-vibration
frequency was obtained for the parabolic distribution and for an elastically
homogeneous shell with a very strong inertial heterogeneity. The lowest value
of this frequency was also obtained for the parabolic distribution, but for
a shell with inertial homogeneity and a very strong elastic heterogeneity.
The free micro-vibration frequencies derived in the framework of the
combined model can be also obtained applying the tolerance one (5.6),
(5.7). However, tolerance model equations (5.6), (5.7) are much more
complicated that the microscopic equations (5.34)-(5.36) of the combined
model. Moreover, within the tolerance model the cell-dependent higher free
wibration frequencies are always determined not separately but together with
the fundamental cell-independent lower free vibration frequencies. In order to
check this conformability, the transversal free micro-vibration frequencies
(7.12) obtained on the basis of micro-dynamic equations (5.36) of the
combined model were compared with corresponding those (6.53) derived in
the framework of tolerance model (5.6), (5.7). Obviously, calculations based
on (6.53) were carried out for m = n = 1, i.e. for wave numbers o = 7/ L,
[ = m/Ls. It has been shown that the results from the combined model are
in a very good agreement with those from the tolerance model.

The length-scale effect in a special problem for the open functionally graded
shell under consideration dealing with the axial harmonic micro-vibrations
with vibration frequency @ was analysed on the basis of micro-dynamic
equation (5.35), which in the studied problem reduces to Eq. (7.16).
Special boundary conditions were imposed on fluctuation amplitude being
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unknown in this equation. Linear, parabolic, sinus and constant (i.e. periodic)
distributions of material properties were taken into account. It was shown
that the shape of these micro-vibrations depends on relations between
values of frequency w and a certain new additional higher-order free
vibration frequency &, (7.19), depending on a cell size \. The
maicro-vibrations can decay exponentially and very strongly near
the boundary ¢ = 2° = 0 and can be treated as equal to zero
outside a certain marrow layer near this boundary. The problem
with strongly decaying micro-vibrations near the boundary & = 0 is referred
to as the space-boundary layer phenomena. Thus, it was shown
that the microscopic equations of the combined model describe
the space-boundary layer phenomena. The micro-vibrations can
decay exponentially but not so strongly. They can decay linearly.
Certain values of W cause a non-decayed form of micro-vibrations
(micro-vibrations oscillate), for certain values of ¥ we deal with
resonance micro-vibrations.

¢) The problem of long wave propagation in the open functionally graded shell
under consideration but now unbounded in an axial direction was analysed
on the basis of equation (5.35) describing the shell micro-dynamics in an
axial direction. In the considered problem, this equation reduces to Eq.
(7.16). Linear, parabolic, cosine and constant (i.e. periodic) distributions
of material properties were taken into account. The long waves, related to
micro-fluctuation amplitude being unknown of equation (7.16) were studied.
Note, that we deal with long waves if condition A\/L < 1 holds, where A
is the characteristic length dimension of a cell and L is the wavelength.
It was shown that the tolerance-periodically micro-heterogeneity of
the shell leads to exponential waves and to dispersion effects,
which cannot be analysed in the framework of the asymptotic
models for periodic/tolerance-periodic shells. Moreover, the new
wave propagation speed (7.35) depending on the microstructure
size has been obtained. The influence of the shell elastic and inertial
properties on this cell-dependent speed was analysed. From numerical
calculations, it follows that the values of the wave propagation velocity
increase with decreasing differences between elastic properties of the shell
component materials, but they decrease with decreasing of differences
between inertial properties of the component materials. Values of the wave
propagation speed decrease with the decreasing of differences between a cell
size A and the wavelength L.

d) The influence of a microstructure size on the character of displacement
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micro-fluctuations in the transversally graded shell under consideration
was also analysed in a certain special initial-value problem describing by
equation (7.16) (or its dimensionless form (7.17)). We recall that Eq.
(7.16) describes micro-dynamic behaviour of the shell in an axial direction.
The considerations were restricted to the time interval [O, 7/ 2]. The
important conclusion is that the distribution of these micro-fluctuations
in the time interval under consideration depends on interrelations between
microstructure length parameter A and a certain length parameter [
independent of a cell size and described by means of elastic and inertial
properties of the shell and by a certain time constant. It has been shown that
if [ < A, then the displacement micro-fluctuations decrease monotonically
and very softly; they don’t take the zero-value in the time interval under
consideration. For [ = A the micro-fluctuations decay monotonically in the
time interval under consideration; for 7 = 7/2 they are equal to zero. If
[ > X then micro-fluctuations decay monotonically and strongly in a certain
subinterval of the time interval under consideration, and then the absolute
values of these solutions increase monotonically in the remaining part of this
time interval.

We recall that some special engineering problems discussed in Chapters 7
and 8 are related to shells composed of two homogeneous, elastic, isotropic
materials densely and tolerance-periodically distributed along the circumferential
direction. It has to be emphasized that the results presented in the chapters
mentioned above can be easily extended on the case in which we deal with shells
composed of more than two homogeneous, elastic, isotropic materials densely
and tolerance-periodically distributed along x-coordinate. It is worth mentioning
that the averaged models proposed in the doctoral thesis can also be applied to
investigations of dynamic problems in cylindrical shells reinforced by stiffeners
tolerance-periodically and densely distributed in circumferential direction. On the
macroscopic level, these stiffened shells can be treated as shells with transversally
graded macrostructure.

The functionally graded shells being objects of considerations in this doctoral
dissertation are widely applied in civil engineering, most often as roof girders and
bridge girders. They are also widely used as elements of housings of reactors and
tanks. The transversally graded shells having small length dimensions are elements
of air-planes, ships and machines.

The most important original elements of the doctoral thesis are as
follows:

1. Derivation of three new mathematical averaged models for the analysis
of dynamic problems in thin linearly elastic Kirchhoff-Love-type open
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circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in the circumferential direction as well as
with a constant structure in an axial direction:

a) the tolerance non-asymptotic model governed by equations with
continuous and slowly-varying coefficients depending also on
a microstructure size, cf. (5.6), (5.7); it means this model makes it
possible to investigate the length-scale effect,

b) the consistent asymptotic model governed by equations with
continuous and slowly-varying coefficients but independent of
a cell size, cf. (5.18),

c¢) the combined asymptotic-tolerance model in which asymptotic and
tolerance models are conjugated with themselves under assumption that
solutions obtained in the framework of the asymptotic model are known,
cf. (5.18), (5.30), (5.31); coefficients of this model are continuous
and slowly wvarying; moreover, coefficients in microscopic
(tolerance) model (5.30), (5.31) which is imposed on the
macroscopic (asymptotic) one (5.18) depend on microstructure
size.

. It has been shown that the tolerance model formulated here can be
successfully applied to investigations of the effect of a cell size on the
dynamic behaviour of the functionally graded cylindrical shells under
consideration. It makes it possible to determine and analyse the new
additional cell-dependent higher free vibration frequencies caused
by the tolerance-periodic structure of the shells.

. It has been given evidence that the differences between the fundamental
lower free vibration frequencies derived from the tolerance model and free
vibration frequencies obtained from the asymptotic one are negligibly small.
Hence, from a calculation point of view, the asymptotic model being more
simple than the non-asymptotic one is sufficient for the determination and
analysis of the basic free vibration frequencies.

. It has been shown that the microscopic tolerance equations derived in the
second step of combined modelling, under special conditions imposed on the
fluctuation shape functions, are independent of solutions obtained in the
first step of combined modelling, i.e. in the framework of asymptotic model.,
cf. (5.34)-(5.36). It means that microscopic equations (5.34)-(5.36)
make it possible to study the shell micro-dynamics independently
of the shell macro-dynamics. This is the greatest advantage of the
combined model proposed in this dissertation.
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a)

Using these micro-dynamic equations, the new cell-dependent higher
free vibration frequencies have been determined and analysed
independently of the fundamental, classical cell-independent
lower free vibration frequencies.

Some mnew important results have been obtained analysing
the harmonic micro-vibrations with vibration frequency w. It was
shown that the form of these micro-vibrations depends on relations
between values of vibration frequency @ and a certain new additional
higher-order free vibration frequency @, (7.19), depending on the cell size.
The micro-vibrations can decay exponentially. They can decay
linearly. For certain interrelations between W and w, we deal
with a non-decayed form of micro-vibrations (micro-vibrations
oscillate) or with resonance micro-vibrations. Moreover, it was
shown that the micro-dynamic equations of the combined model
describe the space-boundary layer phenomena.

Some new tmportant results have been obtained analysing the
long wave propagation problem related to micro-fluctuations
in  axtal direction. It was shown that the tolerance-periodic
micro-heterogeneity of the shells leads to exponential waves and to
dispersion effects. Moreover, the new wave propagation speed (7.35)
depending on the microstructure size has been obtained.

Some new important results have been obtained examining the
influence of a microstructure size on the character of displacement
micro-fluctuations in a certain initial-value problem with special initial
conditions. It has been given evidence that the distribution of these
micro-fluctuations in the time interval under consideration depends on
interrelations between microstructure length parameter A\ and a certain
length parameter [ independent of a cell size and described by means of
elastic and inertial properties of the shell and by a certain time constant.

The most important final comments are:
1. The assumed aims of this doctoral thesis have been realized.

2. Theses of the doctoral dissertation have been proven.

The results obtained in this dissertation have an essential influence

on the state of knowledge dealing with dynamic behaviour of thin-walled
tolerance-periodic cylindrical shells, which on the macro-level are
referred to as the transversally graded shells. The results also generate
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new

directions of further investigations. Thus, the results exert an

influence on the development of this field of knowledge.
The anticipated directions of further investigations can be related to:

the modelling of dynamic and stability problems for the cylindrical shells
of a heterogeneous microstructure, which is periodic in the circumferential
direction and slowly varying along the axial direction (longitudinally
graded shells),

the stationary and dynamic stability problems,

the analysis of shells in the framework of theories which are more exact than
the Kirchhoff-Love shell theory,

the geometrically non-linear shell problems,

the modelling of dynamic thermoelasticity problems and others.
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Appendix: Calculations of coefficients in
averaged models equations

Averaged models equations discussed in Chapters 6 and 7 have coefficients shown
below.

Note, that in calculations of those coefficients, the dimensional forms of
functions h(-) € O(N), g(-) € O(N?), dig(-) € O()) are taken into account, cf.
(A.5), (A7), (A.14)-(A.18), (A.20), (A.21). Some of the averages found in the
equations discussed in Chapters 6, 7 contain dimensionless forms of these functions,
ie. h=X"Th,g= )12, 9= \""g.
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Summary

Dynamics of thin functionally graded cylindrical shells -
tolerance modelling

The subject-matter of this doctoral thesis is the analytical modelling and
analysis of dynamic problems for thin linearly elastic Kirchhoff-Love-type open
circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in circumferential direction. It means that
on the microscopic level, the shells consist of a very large number of separated,
small elements regularly distributed along circumferential direction and perfectly
bonded to each other (or to the homogeneous matrix), cf. Figs. 4.1 and 4.2. These
elements, called cells, are treated as thin shells. It is assumed that the adjacent
cells are nearly identical ( i.e. they have nearly the same geometrical, elastic
and inertial properties), but the distant elements can be very different.
At the same time, the shells have constant structure in axial direction. On
the microscopic level, the geometrical, elastic and inertial properties of these
shells are determined by highly oscillating, non-continuous and tolerance-periodic
functions in circumferential direction. On the other hand, on the macroscopic
level, the averaged properties of the shells are described by functions being
continuous and slowly wvarying along the direction of tolerant periodicity.
It means that the tolerance-periodic shells under consideration can be treated
as made of functionally graded materials (FGM) and called functionally
graded shells. Moreover, since macroscopic (i.e. averaged) properties of the shells
are graded in direction normal to interfaces between constituents, this gradation
is referred to as the transversal gradation.

Dynamic behaviour of such shells are described by the known governing
equations (4.10) of Kirchhoff-Love theory for thin elastic shells. For
tolerance-periodic shells, coefficients of these equations are highly oscillating,
non-continuous and tolerance-periodic functions. That is why the direct application
of these equations to investigations of specific dynamic problems is non-effective
even using computational methods.

The first aim of the doctoral thesis has been to formulate and
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discuss three new wmathematical averaged models with continuously
slowly-varying coefficients constituting a proper tool for the
analysis of selected dynamic problems in the thin cylindrical shells
with a tolerance-periodic microstructure and transversally graded
macrostructure in the circumferential direction. Moreover, two from
these models take into account the effect of a microstructure size on
the dynamic shell behaviour. In order to formulate these models, the
tolerance, consistent asymptotic and combined asymptotic-tolerance
modelling procedures, cf. [164], have been applied to the starting
Euler-Lagrange equations (4.9), which explicit form (4.10) coincides
with the governing equations of Kirchhoff-Love theory for thin elastic
shells.

The tolerance approach is based on the notion of tolerance relations
between points and real numbers related to the accuracy of the performed
measurements and calculations. Tolerance relations are determined by tolerance
parameters. Other fundamental concepts of this modelling technique are those
of slowly-varying functions, tolerance-periodic functions, fluctuation
shape functions and averaging operation. The tolerance modelling is based
on two assumptions. The first of them is called the tolerance averaging
approximation and makes it possible to neglect terms of an order of tolerance
parameters. The second one is termed the micro-macro decomposition. It
states that the displacement fields occurring in the starting lagrangian have
to be the tolerance-periodic functions in the direction of tolerant periodicity.
Hence, they can be decomposed into unknown averaged displacements
(macrodisplacements) being slowly-varying functions and fluctuations
represented by finite series of products of the known highly oscillating
continuous tolerance-periodic fluctuation shape functions and unknown
slowly-varying fluctuation amplitudes. The basic concepts and assumptions
of the tolerance modelling technique are outlined in Chapter 3 of this doctoral
thesis.

The tolerance modelling technique applied to starting Euler-Lagrange
equations (4.9) has been realized in two steps. The first step has been based
on the tolerance averaging of the starting lagrangian (4.8) by applying
micro-macro decomposition (5.1), averaging operation (3.5) as well
as the tolerance averaging approximation (83.6). The resulting averaged
form of lagrangian (4.8) is given by (5.3). In the second step, using the
principle of stationary action to the averaged action functional (5.4)
defined by means of tolerance-averaged lagrangian (5.3), we have arrived
at Euler-Lagrange equations (5.5) and then at their explicit form given by
constitutive relations (5.6) and dynamic balance equations (5.7). Summarizing, the
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tolerance model for the analysis of dynamic problems for thin linearly
elastic Kirchhoff-Love-type cylindrical shells having a transversally
graded macrostructure and a tolerance-periodic microstructure in
circumferential direction is represented by constitutive relations (5.6)
and dynamic balance equations (5.7) together with micro-macro
decomposition (5.1) and physical reliability conditions (5.2). The basic
unknowns are macrodisplacements and fluctuation amplitudes which must
be slowly-varying along x-coordinate parametrizing the shell midsurface in
circumferential direction. The resulting tolerance model equations have
coefficients which are continuous and slowly-varying in the direction
of tolerant periodicity. Moreover, some of these coefficients depend on
microstructure size. The length-scale effect can be analysed not only in
dynamic but also in stationary problems.

On passing from tolerance averaging to the consistent asymptotic averaging,
the concept of highly oscillating fluctuation shape functions is retained only.
The notions of tolerance-periodic functions and slowly-varying functions are not
introduced. The fundamental assumption imposed on the starting lagrangian
in the framework of this approach is called the consistent asymptotic
decomposition. It states that the displacement fields occurring in the lagrangian
have to be replaced by families of fields depending on parameter ¢ € (0,1]
and defined in an arbitrary cell. These families of displacements are decomposed
into averaged part described by unknown functions (macrodisplacements) being
continuously bounded in the tolerant periodicity direction and highly-oscillating
part depending on . This highly-oscillating part is represented by the known
highly oscillating fluctuation shape functions multiplied by unknown functions
(fluctuation amplitudes) being continuously bounded in the direction of tolerant
periodicity.

Asymptotic modelling procedure applied to Euler-Lagrange equations (4.9)
has been realized in two steps. The first step has been the consistent
asymptotic averaging of lagrangian (4.9) under consistent asymptotic
decomposition defined by (5.8). The resulting averaged form of lagrangian
(4.9) is given by (5.12). In the second step, applying the principle of stationary
action to the consistent asymptotic action functional (5.13) defined by means of
averaged lagrangian (5.12), we have arrived at Euler-Lagrange equations (5.14) and
then at their explicit form (5.15). Finally, after eliminating unknown fluctuation
amplitudes by means of (5.16), we have obtained asymptotic model equations
(5.18) expressed only in macrodisplacements. The resulting equations have to be
considered together with decomposition (5.19). Coefficients in the asymptotic
equations are continuously slowly variable in x, but they are independent
of the microstructure cell size. Thus, contrary to the tolerance model, the
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consistent asymptotic one is not able to describe the length-scale effect
on the overall shell dynamics.

The combined asymptotic-tolerance model for the analysis of selected
dynamic problems in the functionally graded shells under consideration has been
formulated by applying the combined modelling procedure given in Wozniak
et al. (eds.) [164]. This combined modelling includes the consistent asymptotic and
the tolerance non-asymptotic modelling techniques which are combined together
into a new procedure. The equations of combined model proposed here
consist of asymptotic (macroscopic) model equations (5.20) formulated
by means of the consistent asymptotic procedure and having continuous
and slowly changing coefficients independent of a microstructure length
and of superimposed tolerance (microscopic) model equations (5.30),
(5.31) derived by applying the tolerance modelling technique and having
continuous and slowly-varying coefficients depending also on a cell
size. Both the models are combined together under assumption that in
the framework of the asymptotic model the solutions to the problem
under constderation are known. It has been shown that under special
condition imposed on the fluctuation shape functions, the combined model
makes it possible to separate the macroscopic description of some special
problems from their microscopic description, cf. equations (5.34)-(5.36).
Thus, an important advantage of this model is that it allows us to study
micro-dynamics of the shells under consideration independently of their
macro-dynamics.

Solutions to selected initial/boundary value problems formulated in the
framework of the tolerance model and the microscopic part of combined model have
a physical sense only if unknowns of the aforementioned models are slowly-varying
functions in the direction of tolerant periodicity. Moreover, these conditions can
be also used for the a posteriori evaluation of tolerance parameters and hence, for
the verification of the physical reliability of the obtained solutions.

The second aim of this doctoral thesis has been to apply the
tolerance and asymptotic models derived here to evaluation of the
length-scale effect in some special problems dealing with free vibrations
of the tolerance-periodic shells under consideration. In order to find
analytical solutions to the governing equations of these models (equations with
continuous and slowly-varying coefficients), the known Ritz variational method
has been applied. It has been shown that in the framework of the tolerance
model, not only the fundamental cell-independent lower, but also the
new additional higher-order cell-dependent free vibration frequencies
can be derived and analysed. The higher free vibration frequencies
cannot be determined applying asymptotic models commonly used for
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investigations of dynamics of the periodic or tolerance-periodic shells.
It has been shown that the differences between the fundamental lower free vibration
frequencies derived from the tolerance model and free vibration frequencies
obtained from the asymptotic one are negligibly small. Thus, the effect of the
macrostructure size on the fundamental lower free vibration frequencies of the shells
under consideration can be neglected. Hence, the asymptotic model being more
stmple than the tolerance non-asymptotic one is sufficient from the
point of view of calculations made for the wvibration problems under
constderation.

The third aim of the dissertation has been to apply the microscopic
equations (5.34)-(5.36) derived in the second step of the combined
asymptotic-tolerance modelling to the analysis of length-scale effect in
some special problems dealing with the shell micro-vibrations and with
the long wave propagation related to micro-fluctuations of the shell
displacements. These equations are independent of solutions obtained
in the framework of the consistent asymptotic model (i.e. model derived
in the first step of combined modelling) and make it possible to analyse
selected problems of the shell micro-dynamics independently of the
shell macro-dynamics. This is the greatest advantage of the proposed
combined model. Moreover, micro-dynamic equations (5.34)-(5.36) involve terms
with time and spatial derivatives of unknown micro-fluctuation amplitudes. Hence,
they describe certain time-boundary layer and space-boundary layer phenomena
strictly related to the specific form of initial and boundary conditions imposed on
unknown fluctuation amplitudes.

It has been evidenced that using these micro-dynamic equations, the new
cell-dependent higher free vibration frequencies can be determined and
analysed independently of the fundamental, classical cell-independent
lower free wvibration frequencies. Since equations (5.34)-(5.36) contain
continuously slowly-varying coefficients, the known Galerkin method was used to
obtain approximate formulas of free micro-vibration frequencies.

Some mnew important results have been obtained analysing the
harmonic micro-vibrations with vibration frequency . It has been shown
that the form of these micro-vibrations depends on relations between values of
vibration frequency @ and a certain new additional higher-order free vibration
frequency @, (7.19); depending on the cell size. The micro-vibrations
can decay exponentially. They can decay linearly. For certain
interrelations between © and w, we deal with a mon-decayed form
of micro-vibrations (micro-vibrations oscillate) or with resonance
mzicro-vibrations. Moreover, it has been shown that the micro-dynamic
equations of the combined model describe the space-boundary layer
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phenomena.

Some mnew important results have been obtained analysing the
long wave propagation problem related to micro-fluctuations in axial
direction. It was shown that the tolerance-periodic micro-heterogeneity of the
shells leads to exponential waves and to dispersion effects. Moreover, the new wave
propagation speed (7.35) depending on the microstructure size has been obtained.

All the above length-scale problems studied within the micro-dynamic
equations (5.34)-(5.36) of the combined model cannot be analysed in the
framework of the asymptotic models commonly used for investigations
of dynamic behaviour of the cylindrical shells with a functionally graded
macrostructure and a tolerance-periodic microstructure.

The functionally graded shells being objects of considerations in this doctoral
thesis are widely applied in civil engineering, most often as roof girders and bridge
girders.

The results obtained in the dissertation generate new directions
of further investigations. The anticipated directions of investigations can
be related to: the modelling of stationary and dynamic stability problems in
the framework of linear Kirchhoff-Love second-order theory, the non-linear shell
dynamics and stability, the modelling of dynamic thermoelasticity problems and
others.
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Streszczenie

Dynamika cienkich powlok walcowych o funkcyjnej gradacji
wlasno$ci - modelowanie tolerancyjne

Tematem rozprawy doktorskiej jest matematyczne modelowanie zagadnien
dynamiki cienkich, liniowo-sprezystych, mikro-niejednorodnych powtok walcowych
typu Kirchhoffa-Love’a. W kierunku obwodowym, powtoki te w skali
mikro majqg tolerancyjnie periodyczng mikrostrukture, natomiast w
skalt makro charakteryzujqg sie funkcyjnag poprzeczng gradacjqg wtasnosci
u$rednionych (makrowtasnosci), por. rysunki 4.1, 4.2. Oznacza to, Ze na
poziomie mikro, rozpatrywane w rozprawie powtoki zbudowane sa z duzej liczby
elementow (komorek) idealne ze soba polaczonych i regularnie rozmieszczonych
w kierunku obwodowym. Zaklada sie, ze sasiadujace ze soba komorki sa
prawie identyczne, tzn. maja prawie identyczne wtasnosci geometryczne i
materialowe, natomiast komorki oddalone od siebie moga znacznie sie réznic.
Zaklada sie, ze charakterystyczny wymiar liniowy komorki jest dostatecznie
duzy w poréwnaniu z maksymalng gruboscia powloki oraz dostatecznie
maly w poréwnaniu z minimalnym promieniem krzywizny oraz wymiarem
liniowym powierzchni §rodkowej wzdtuz wspohrzednej x = x! parametryzujacej
te powierzchnie w kierunku obwodowym. Na poziomie mikroskopowym,
wlasnosci geometryczne, sprezyste oraz inercyjne takich powlok opisane sa
silnie oscylujacymi, nieciggtymi, tolerancyjnie periodycznymi funkcjami poditug
argumentu z. Natomiast, na poziomie makroskopowym, usrednione wtasnosci
rozpatrywanych powlok sa opisane funkcjami ciggltymi i wolnozmiennymi w
kierunku tolerancyjnej periodycznosci. Ponadto, usrednione wlasnosci zmieniaja
sie w kierunku prostopadtym do granic miedzy sktadnikami. Powloki takie sa
nazywane powtokami o funkcyjnej poprzecznej gradacji makrowtasnosci.

W kierunku osiowym, wlasnosci rozpatrywanych powtok sg state.

Opis dynamicznych zachowan mikro-niejednorodnych powtok bedacych
przedmiotem rozprawy, w ramach znanej teorii Kirchhoffa-Love’a, prowadzi do
rownan, ktorych wspotezynniki sg tolerancyjnie periodycznymi, silnie oscylujacymi
i nieciagltymi funkcjami w kierunku obwodowym. Stad, rownania te nie moga by¢
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wprost zastosowane do analizy zagadnieri inzynierskich. Formulowane sa zatem
rozne przyblizone metody modelowania (tj. procedury usredniajace) prowadzace
od réwnan rézniczkowych czastkowych z silnie oscylujacymi wspotczynnikami
do réwnan o wspotezynnikach ciagltych i wolnozmiennych (lub wspoétezynnikach
staltych w przypadku walcowych powtok periodycznych).

Modele usrednione powlok (ptyt) periodycznych/tolerancyjnie periodycznych
sa najczescie] otrzymywane na drodze homogenizacji asymptotyczney.
Jednakze, modele te pomijaja wplyw wielkoci komorki na globalne
(makroskopowe) zachowania powloki, tzn. pomijaja efekt skali.

Alternatywne, nieasymptotyczne podejscie do matematycznego modelowania
cial periodycznych lub tolerancyjnie periodycznych, oparte na pojeciu tolerancji
(pojecie zwiazane z doktadnoscia prowadzonych pomiaréw lub obliczen) i
prowadzace do usrednionych réwnan o statych lub cigglych i wolnozmiennych
wspotczynnikach zaleznych od wielkosci komorki, zostalo zaproponowane
i rozwijane przez profesora Czestawa Wozniaka w wielu publikacjach i
podsumowane w monografiach [164, 166, 168|. Relacje tolerancyjne
determinowane parametrami tolerancji, funkcje wolno-zmienne,
funkcje tolerancyjno-periodyczne, fluktuacyjne funkcje ksztaltu oraz
operacja usredniania sq podstawowymsi pojeciamsi techniki tolerancyjnego
modelowania. Technika ta oparta jest na dwoéch zatozeniach. Pierwsze z tych
zatozeni, zwane przyblizeniem (u$rednieniem) tolerancyjnym, umozliwia
pomijanie wyrazéow rzedu parametrow tolerancji. Drugie zalozenie zwane jest
mikro-makro dekompozycjq pol przemieszczen (lub pola temperatury w
zagadnieniach przeptywu cieplta). Ograniczajac sie do zagadnienn mechanicznych,
zgodnie 7z tym zalozeniem mnieznane przemieszczenia w réwnaniach
wyjéciowych sa przedstawione w postaci sumy nieznanych wusrednionych
na komorce przemieszczen, bedacych funkcjami wolnozmiennymi
(tzn. przyjmujacymi w ramach tolerancji stale wartosci na komorce), oraz
silnie oscylujgcych fluktuacjyi. Fluktuacje sa opisane przez znane w
kazdym analizowanym zagadnieniu, liniowo-niezalezne, periodyczne
lub tolerancyjnie periodyczne fluktuacyjne funkcje ksztattu pomnozone
przez nieznane wolnozmienne funkcje, zwane amplitudams fluktuacys.

W niniejszej rozprawie  wykorzystano  technike  tolerancyjnego
modelowania w zagadnieniach dynamiki walcowych powtok
mikro-niejednorodnych o poprzecznej gradacji makrowtasnosci. Wykorzystano
takze nowe podejscie do asymptotycznego usredniania réwnan roézniczkowych
czastkowych  (lub  funkcjonaléw  calkowych) o  silnie  oscylujacych
periodycznych/tolerancyjnie  periodycznych wspoétczynnikach — przedstawione
w  ksiazce [164] pod redakcja Cz. Wozniaka. Podejscie to nazwano
asymptotycznym konsystentnym. Wykorzystano roéwniez zaproponowana w
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monografii [164] polaczona asymptotyczno-tolerancyjna technike modelowania
cial mikro-niejednorodnych. Stosujac modelowanie tolerancyjne, asymptotyczne
konsystentne oraz asymptotyczno-tolerancyjne do wyjSciowych réwnan
Eulera-Lagrange’a (4.9), ktorych jawna postaé pokrywa sie ze znanymi rownaniami
(4.10) teorii Kirchhoffa-Love’a cienkich powlok sprezystych, wyprowadzono trzy
nowe matematyczne usrednione modele: tolerancyjny, asymptotyczny
konsystentny oraz asymptotyczno-tolerancyjny. W przeciwienstwie
do silnie oscylujacych i nieciaglych wspoétczynnikéw réwnan wyjsciowych,
wspotczynniki réwnan rézniczkowych tych usrednionych modeli sa ciagltymi i
wolnozmiennymi funkcjami podtug wspotrzednej x parametryzujacej powierzchnie
srodkowa powloki w kierunku obwodowym. Ponadto, modele tolerancyjny i
asymptotyczno-tolerancyjny uwzgledniaja wplyw wielkosci mikrostruktury na
dynamiczne zachowania powtoki. Wplyw ten zwany jest efektem skalsi.

Procedura tolerancyjnego modelowania zastosowana do wyjsciowych rownan
Eulera-Lagrange’a (4.9) realizowana byta w dwoch etapach. Pierwszy etap polegal
na tolerancyjnym usrednieniu funkcji Lagrange’a (4.8) z wykorzystaniem
mikro-makro dekompozycji (5.1), operacji usredniania (3.5) oraz przyblizenia
tolerancyjnego (3.6). Tolerancyjnie usredniona posta¢ lagrangianu (4.8) dana jest
wzorem (5.3). W drugim etapie, stosujac zasade stacjonarnosci dziatania
do usrednionego funkcjonatu dziatania (5.4) zdefiniowanego poprzez
tolerancyjny usredniony lagrangian (5.3), otrzymano usrednione réwnania
Eulera-Lagrange’a (5.5), ktorych jawna postaé¢ reprezentowana jest przez relacje
konstytutywne (5.6) oraz réownania ruchu (5.7). Réwnania (5.6), (5.7) wraz z
mikro-makro dekompozycja (5.1) reprezentuja model tolerancyjny do analizy
zagadnien dynamiki cienkich powlok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji makrowlasnosci w
kierunku obwodowym. Wspoétczynniki réwnan modelu tolerancyjnego sa ciagte
i wolnozmienne. Ponadto, niektéore z tych wspoélczynnikow zaleza od wielkosci
mikrostruktury. Efekt skali moze byé¢ analizowany nie tylko w dynamicznych,
ale takze w stacjonarnych zagadnieniach. Niewiadome réwnan modelu, tzn.
makroprzemieszczenia oraz amplitudy fluktuacji, muszg byé funkcjami
wolnozmiennymi w kierunku tolerancyjnej periodycznosci. Te wymagania
sa wykorzystane do oceny a posterior: parametrow tolerancji, czyli takze do
sprawdzenia fizycznej poprawnosci wynikéw otrzymanych w ramach modelu
tolerancyjnego.

Technika  asymptotycznego konsystentnego wusredniania réwnan
rozniczkowych czastkowych (lub funkcjonalow catkowych) o silnie oscylujacych
periodycznych /tolerancyjnie periodycznych wspotezynnikach, przedstawiona w
monografii [164], nie zawiera pojeé¢ funkcji tolerancyjnie periodycznej i funkcji
wolnozmiennej. Wprowadzono tu tylko pojecie fluktuacyjnej funkcji ksztattu. W
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zagadnieniach mechanicznych, podstawowym kinematycznym zaltozeniem tego
podejscia jest asymptotyczna dekompozycja pol przemieszczen. Zgodnie z
tym zalozeniem, przemieszczenia wystepujace w wyjsciowych réwnaniach (lub w
wyjsciowym funkcjonale catkowym) zastapione sa rodzinami pol przemieszczen
zdefiniowanymi na komorce i zaleznymi od parametru ¢ € (0,1]. Rodziny te
roztozone sa na nieznane przemieszczenia, (zwane tak jak w podejsciu
tolerancyjnym makroprzemieszczeniami), mniezalezne od parametru &
oraz silnie oscylujgce fluktuacje przemieszczen zalezne od c. Te silnie
oscylujace fluktuacje sa reprezentowane przez znane periodyczne/tolerancyjnie
periodyczne fluktuacyine funkcje ksztattu zalezne od ¢ oraz przez nieznane
funkcje niezalezne od ¢, ktore, tak jak w podejsciu tolerancyjnym, zwane
sa amplitudami fluktuacji. Zada sie, aby wystepujace w asymptotycznej
dekompozycji funkcje niezalezne od e byly ciagte i ograniczone w kierunkach
periodyki lub tolerancyjnej periodycznosci wraz z ich odpowiednimi pochodnymi.
Niezaleznos¢ wyzej wymienionych funkcji od parametru ¢ stanowi zasadnicza
roznice miedzy podejsciem asymptotycznym konsystentnym a podejsciem
stosowanym w znanych teoriach homogenizacji asymptotycznej. Ponadto, modele
asymptotyczne konsystentne, w przeciwienstwie do powszechnie stosowanych
modeli asymptotycznych, nie wymagaja rozwigzywania skomplikowanych
analitycznie brzegowych zagadnienn na komoérce w celu wyznaczenia efektywnych
sztywnosci ciata. W podej$ciu asymptotycznym konsystentnym, moduty efektywne
sg rozwigzaniem uktadu réwnan algebraicznych liniowych dla nieznanych amplitud
fluktuacyji.

Procedura modelowania asymptotycznego konsystentnego zastosowana do
wyjsciowych rownan Eulera-Lagrange’a (4.9) realizowana byta w dwoch etapach.
Pierwszy etap polegal na asymptotycznym konsystentnym usrednieniu
funkcji Lagrange’a (4.8) z wykorzystaniem asymptotycznej dekompozycji (5.8).
Usredniona postaé¢ lagrangianu (4.9) dana jest wzorem (5.12). W drugim etapie,
stosujac zasade stacjonarnosct dziatania do usrednionego funkcjonalu
dziatania (5.13) zdefiniowanego poprzez asymptotycznie usredniony
lagrangian  (5.12), otrzymano usrednione rownania FEulera-Lagrange’a
(5.14) oraz ich jawna posta¢ (5.15). Po wyeliminowaniu z ukladu réwnan
(5.15) amplitud fluktuacji, por. wzory (5.16), otrzymano réwnania modelu
asymptotycznego (5.18) wyrazone tylko w makroprzemieszczeniach. Réwnania
(5.18) wraz z dekompozycja (5.19) oraz rownaniami dla amplitud fluktuacji (5.16)
reprezentuja model asymptotyczny konsystentny do analizy zagadnien dynamiki
rozwazanych w rozprawie cienkich powlok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji makrowtasnosci w
kierunku obwodowym. Wspoélczynniki rownan modelu asymptotycznego sa ciagle
i wolno zmieniajace sie. Wspotczynniki te nie zalezg od parametru diugosci
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mikrostruktury.

Stosujac  procedure asymptotyczno-tolerancyjna, por. ksiazka [164],
wyprowadzono model asymptotyczno-tolerancyjny do badania zagadnien
dynamiki walcowych powtok o tolerancyjnie periodycznej mikrostrukturze i
poprzecznej gradacji makrowlasnosci w kierunku obwodowym. Roéwnania tego
modelu reprezentowane sa przez rownania (5.20) modelu asymptotycznego
(makroskopowego), sformutowane z zastosowaniem techniki modelowania
asymptotycznego konsystentnego i majace ciagle, wolno zmieniajace sie
wspotczynniki  niezalezne od wielkoSci mikrostruktury oraz réwnania
(5.30), (5.31) modelu tolerancyjnego (mikroskopowego), wyprowadzone
z zastosowaniem techniki tolerancyjnego modelowania i majace ciggte,
wolnozmienne wspotczynniki zalezne od wielkosci komdorki. Obydwa modele
potaczone sa ze soba na podstawie zalozenia, ze rozwigzania danego zagadnienia
brzegowo-poczatkowego w ramach modelu asymptotycznego sa znane. W
rozprawie pokazano, ze przy pewnych warunkach nalozonych na fluktuacyjne
funkcje ksztaltu, otrzymuje sie rownania (5.34)-(5.36) niezalezne od rozwiazan w
ramach modelu asymptotycznego. Rownania te opisujg mikrodynamiczne
zachowania rozwazanych w rozprawie powtok niezaleznie od ich
makrodynamicznych zachowan. Jest to gléwna zaleta wyprowadzonego
modelu asymptotyczno-tolerancyjnego.

Sformutowane modele tolerancyjny i asymptotyczny zastosowano do oceny
efektu skali w pewnych szczegdlnych zagadnieniach dotyczacych drgan wlasnych
rozwazanych powlok. Poniewaz znalezienie analitycznych rozwigzan réwnan
modelu tolerancyjnego lub modelu asymptotycznego w ogélnym przypadku nie jest
mozliwe, zastosowano przyblizony sposob rozwigzania. Przyblizone wzory czestosci
drgan wtasnych otrzymano korzystajac z metody Ritza. Analizujgc dynamike
powtok w ramach modelu tolerancyjnego, otrzymano wzory analityczne
nie tylko na podstawowe tzw. nizsze czestoscit drgan wtasnych, ale
rowniez na nowe, dodatkowe tzw. wyzsze czestosSci drgan wtasnych
zalezne od parametru dtugosci mikrostruktury. Wyzsze czestosSci
umozliwiajg analize drgan wyzszego rzedu oraz zjawiska dyspersji.
Te nowe wyzsze czestosci drgan nie majg swoich odpowiednikéw w
modelach asymptotycznych oraz w modelach numerycznych, opartych
na przyktad na metodzie elementéow skornczonych. Wykazano, ze wartosci
nizszych czestosci drgan wtasnych obliczane wedhug modelu tolerancyjnego sa
pomijalnie wieksze od warto$ci odpowiednich czestosci drgan otrzymanych w
ramach modelu asymptotycznego. Uwzglednienie efektu skali powoduje wiec
jedynie nieznaczna, nie majaca praktycznego znaczenia korekte wartosci czestosci
drgan. Oznacza to, ze efekt skali w zagadnieniach dotyczgcych drgan
wtasnych rozwazanych powtok jest pomijalnie maly z obliczeniowego
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punktu widzenia. Zagadnienia te moga by¢ analizowane w ramach modeli
asymptotycznych (prostszych analitycznie od modeli z efektem skali).

Wyprowadzone 7z zastosowaniem procedury asymptotyczno-tolerancyjnej
rownania  (5.34)-(5.36), niezalezne od rozwigzan w ramach modelu
asymptotycznego, wykorzystano do analizy zagadnien —mikrodynamiki
rozwazanych tolerancyjnie periodycznych powtok.

Analizowano mikrodrgania niezaleznie od makrodrgan. Wyprowadzono
wzory na wyzsze, dodatkowe, zalezne od wielkosci mikrostruktury
czestosci mikrodrgan wtasnych w kierunkach obwodowym, osiowym oraz
normalnym do powierzchni Srodkowej. Wzory te otrzymano Kkorzystajac
z przyblizone] metody Galerkina. Przeprowadzono doktadng analize tych
czestosci.

Analizujgc harmoniczne mikrodrgania w kierunku osiowym =z
czestoscig w (rozprzezone z mikrodrganiami w kierunkach obwodowym
i normalnym), uzyskano nowe wyniki w teorii mikrodrgar powtok
o funkcyjnej gradacji wtasnosci. Pokazano, ze w =zaleznosci od relacji
miedzy czestosciag drgan harmonicznych & a wyzsza czesto$cia mikrodrgan
wtasnych w,, zalezna od wielkosci komorki, wystepuja rézne postaci mikrodrga.
Mikrodrgania zanikajg wykladniczo lub liniowo. Dla pewnych relacyi
miedzy wartoSciami @ i W, mamy do czynienia z niezanikajacg (tj.
oscylujacq) postaciq mikrodrgar lub z mikrodrganiami rezonansowymi.
Zbadano takze tzw. efekt warstwy brzegowej, gdzie termin ,brzeg”
odnosit sie do przestrzeni.

Nowe wyniki uzyskano badajgc zagadnienia propagacjyi fal dlugich
w nieograniczonych w kierunku osiowym powtokach tolerancyjnie
periodycznych. Badane fale odnosilty sie tylko do fluktuacyjnych czesci
przemieszczen zaleznych od efektu skali. Pokazano, zZe w zaleznoSci od
ograniczen natozonych na predkosé propagacji fal mogqg propagowaé
ste trzy typy fal: sinusoidalna lub wyktadnicza lub wystepuje zdegenerowany
przypadek rozgraniczajacy fale sinusoidalne i wyktadnicze. Wyprowadzono relacje
dyspersji. Wyprowadzono @ zbadano nowq predkosé propagacji fal zalezng
od parametru diugosci mikrostruktury.

Nowe wyniki uzyskano analizujgc szczegolny problem poczgtkowy
opisany rownaniem (5.35) dla amplitud mikro-fluktuacji w kierunku osiowym.
W badanym zagadnieniu réwnanie to redukuje sie do réwnania rézniczkowego
zwyczajnego drugiego rzedu z pochodnymi wzgledem czasu. Problem ten
ilustruje wpltyw wielkosci komorki na charakter mikro-fluktuacji przemieszczen w
kierunku osiowym, przy przyjetych warunkach poczatkowych. Pokazano, ze w
zaleznosct od relacji miedzy pewnym parametrem dlugosci | niezaleznym
od wielkosci komorki a parametrem dlugosci mikrostruktury M\,
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mikro-fluktuacje przemieszczen w kierunku osiowym majqg rozZny
charakter w badanym przedziale czasu: dla | < A maleja monotonicznie i
bardzo tagodnie i nie przyjmuja wartosci zero w badanym przedziale czasu, dla
[ = X mikro-fluktuacje malejg monotonicznie i na koricu badanego przedziatu
czasu sa rowne zeru, dla [ > A mikro-fluktuacje zanikaja monotonicznie i silnie w
pewnym podprzedziale badanego przedziatu czasu, a nastepnie absolutne wartosci
mikro-fluktuacji rosng monotonicznie w pozostatej czesci tego przedziatu czasu.

Wszystkie przedstawione powyzej efekty, uzyskane w ramach réwnan
mikromechaniki (5.34)-(5.36) modelu asymptotyczno-tolerancyjnego nie mogaq
byé analizowane w ramach asymptotycznych modeli powtok, jak rowniez
przy uzyciu znanych programow komputerowych.

Wyprowadzone w niniejszej rozprawie modele mikro-niejednorodnych
powlok walcowych moga byé¢ wykorzystane do badari dynamiki powtokowych
elementow konstrukcyjnych mostow i dachéw, powlokowych elementow reaktorow,
powlokowych elementéw samolotéw, okretow, maszyn.

Uzyskane wyniki maja istotny wpltyw na stan wiedzy dotyczacej dynamicznych
zachowani cienko$ciennych powlok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji wtasnosci
usrednionych (makrowtasnosci) w kierunku obwodowym, a takze generuja
nowe kierunki badan i tym samym wywieraja wplyw na rozwo6j tej dziedziny
wiedzy.

Dalsze badania mikro-niejednorodnych powtok walcowych, bedacych obiektem
rozwazan rozprawy doktorskiej, z wykorzystaniem techniki tolerancyjnego
modelowania moga dotyczy¢ nieliniowych zagadnien dynamiki i statecznodci,
probleméw dynamicznej termosprezystosci, formutowania modeli w ramach teorii
doktadniejszych niz teoria Kirchhoffa-Love’a.
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