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List of symbols

x ≡ x1, ξ ≡ x2 coordinates parametrizing the shell midsurface M in
circumferential and axial directions, respectively; at the same
time x ≡ x1 and ξ ≡ x2 are points in Ω = (0, L1) ∈ E1 and
Ξ ≡ (0, L2) ∈ E1, respectively, where L ≡ L1, L2 are the
length dimensions of M along x-coordinate and ξ-coordinate,
respectively; it means that (Ω×Ξ) ∈ E2 is referred as a region
of the shell midsurface parameters x1, x2;

α, β indices taking values 1, 2 and related to midsurface parameters x1,
x2, summation convention holds;

a, b non-tensorial indices, run over {1, 2, . . . , n}, summation
convention holds;

A,B non-tensorial indices, run over {1, 2, . . . , N}, summation
convention holds;

aαβ covariant midsurface first metric tensor, for orthonormal
parametrization introduced on M tensors aαβ = aαβ are the unit
tensors;

bαβ covariant midsurface second metric tensor, for orthonormal
parametrization introduced on M b22 = b12 = b21 = 0 and
b11 = −r−1, where r is a midsurface curvature radius;

∂α = ∂/∂xα partial differentiation with respect to xα, ∂α,...,δ ≡ ∂α . . . ∂δ;
∆ ≡ [−λ/2, λ/2] basic cell in Ω ∈ E1, where λ ≡ λ1 is a cell length

dimension in x ≡ x1-direction;
∆(x) ≡ x+ ∆ = [−λ/2, λ/2] an arbitrary cell with a centre at point x ∈ Ω∆,

Ω∆ ≡ {x ∈ Ω : ∆(x) ⊂ Ω}, Ω∆ is a set of all the
cell centres which are inside Ω;

λ diameter of a closed subset ∆ ≡ [−λ1/2, λ1/2]× . . .× [−λm/2, λm/2] of Em,
called the microstructure length parameter; if m = 1 then ∆ ≡ [−λ/2, λ/2]
and λ ≡ λ1 is a cell length dimension in x ≡ x1-direction;

∆ε ≡ (−ελ/2, ελ/2) scaled cell in Ω ∈ E1, ε ∈ (0, 1];
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d(x) the shell thickness, x ∈ Ω;
r midsurface curvature radius;
t time coordinate, t ∈ I ≡ [t0, t1];
uα(x, ξ, t) displacements along xα, (x ≡ x1, ξ ≡ x2, t) ∈ Ω× Ξ× I;
w(x, ξ, t) displacement in the direction normal to the shell midsurface M ,

(x, ξ, t) ∈ Ω× Ξ× I;
Dαβγδ(x) membrane stiffness tensor, x ∈ Ω;
Bαβγδ(x) bending stiffness tensor, x ∈ Ω;
µ(x) mass density per midsurface unit area, x ∈ Ω;
fa(x, ξ, t) external forces along xα, (x ≡ x1, ξ ≡ x2, t) ∈ Ω× Ξ× I;
f(x, ξ, t) external forces in the direction normal to the shell midsurface M ,

(x, ξ, t) ∈ Ω× Ξ× I;
A(uα, w) action functional;
L(·) Lagrange function for the considered problem;
δ set of tolerance parameters, δ ≡ (λ, δ0, δ1, . . . , δR), where λ is related

to the distances between points in region Ω ∈ Em and δ0, δk,
k = 1, 2, . . . , R, are related to the differences between the values
of function F (·) defined in Ω ∈ Em and its gradient ∂kF (·) in points
x,y belonging to Ω ∈ Em such that |x−y| ≤ λ; nonnegative integer
R is assumed to be specified in every problem under consideration;
in the present dissertation m = 1;

O(δ) terms of the order of tolerance parameters δ;

〈f〉 (·) =
〈
f̃
〉

(·) averaging of function f in ∆(·), where f̃ is a periodic
approximation of f in ∆(·);

TPR
δ (Ω,∆) system of tolerance-periodic functions of the R-th kind defined on

Ω ∈ Em, which are tolerance-periodic with respect to cell ∆ and
tolerance parameters δ; in the present dissertation m = 1 and R
is equal to either 0 or 1 or 2;

SV R
δ (Ω,∆) system of slowly-varying functions of the R-th kind defined on

Ω ∈ Em, which are slowly-varying with respect to cell ∆ and
tolerance parameters δ; in the present dissertation m = 1 and R
is equal to either 1 or 2;

FSRδ (Ω,∆) system of tolerance-periodic fluctuation shape functions of theR-th
kind defined on Ω ∈ Em, which are tolerance-periodic with respect
to cell ∆ and tolerance parameters δ; in the present dissertation
m = 1 and R is equal to either 1 or 2;
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u0
α(·, ξ, t) ∈ SV 1

δ (Ω,∆), w0(·, ξ, t) ∈ SV 2
δ (Ω,∆) macrodisplacements

(averaged variables)
being unknowns of the
tolerance model equations,
(ξ, t) ∈ Ξ× I;

Ua
α(·, ξ, t) ∈ SV 1

δ (Ω,∆), WA(·, ξ, t) ∈ SV 2
δ (Ω,∆) fluctuation amplitudes

being unknowns of the
tolerance model equations,
(ξ, t) ∈ Ξ× I;

ha(·) ∈ FS1
δ (Ω,∆), gA(·) ∈ FS2

δ (Ω,∆) fluctuation shape functions;〈
Lhg
〉

(x) the tolerance averaging of lagrangian L in ∆(x),
x ∈ Ω∆;

Ahg(u
0
α, U

a
α, w

0,WA) tolerance averaging of action functional A(uα, w);
u0
α(x, ξ, t), w0(x, ξ, t) unknowns of the consistent asymptotic model,

which as in the tolerance modelling are called
macrodisplacements, but they are not referred to the
slowly-varying functions introduced in the tolerance
averaging, (x, ξ, t) ∈ Ω× Ξ× I;

Ua
α(x, ξ, t), WA(x, ξ, t) unknowns of the consistent asymptotic model, which

as in the tolerance modelling are called fluctuation
amplitudes, but they are not referred to the
slowly-varying functions introduced in the tolerance
averaging, (x, ξ, t) ∈ Ω× Ξ× I;

L0(·) averaged form of lagrangian under consistent
asymptotic averaging;

u0α(x, ξ, t), w0(x, ξ, t) the known solutions to a certain initial-boundary
value problem for the consistent asymptotic
equations derived in the first step of the combined
asymptotic-tolerance modelling, (x, ξ, t) ∈ Ω× Ξ× I;

Qk
α(·, ξ, t) ∈ SV 1

δ (Ω,∆), V K(·, ξ, t) ∈ SV 2
δ (Ω,∆) fluctuation amplitudes

being unknowns of the
tolerance model equations
derived in the second
step of the combined
asymptotic-tolerance
modelling, (ξ, t) ∈ Ξ× I,
k = 1, 2, . . . ,m,
K = 1, 2, . . . ,M ;
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ω−, ω+ fundamental lower ω− and new additional cell-dependent higher
ω+ free vibration frequencies derived from the tolerance model of
a functionally graded shell strip, cf. Subsection 6.2;

ωAM free vibration frequency obtained from the asymptotic model of
a functionally graded shell strip, cf. Subsection 6.2;

>ωmn−, >ωmn+ fundamental lower >ωmn− and new additional cell-dependent
higher >ωmn+ free vibration frequencies derived from the tolerance
model of a functionally graded open shell of finite all length
dimensions, cf. Subsection 6.3;

>ωAMmn free vibration frequency obtained from the asymptotic model of a
functionally graded open shell of finite all length dimensions, cf.
Subsection 6.3;

ω, ω̆, ω cell-dependent higher free vibration frequencies in circumferential
and axial directions as well as in direction normal to the shell
midsurface, respectively, studied on the basis on superimposed
microscopic model equations derived in the second step of the
combined asymptotic-tolerance modelling (equations independent
of solutions obtained in the framework of asymptotic model
formulated in the first step of the combined modelling), cf.
Subsection 7.2;

c new wave propagation speed depending on λ.
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1. Introduction

1.1. Subject-matter of the doctoral thesis

The objects of considerations are thin linearly elastic Kirchhoff-Love-type open
circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in circumferential direction.

It means, that on the microscopic level , the shells under consideration
consist of a very large number of separated, small elements regularly distributed
along circumferential direction and perfectly bonded to each other (or to the
homogeneous matrix). These elements, called cells , are treated as thin shells. It is
assumed that the adjacent cells are nearly identical (i.e. they have nearly the
same geometrical, elastic and inertial properties), but the distant elements can
be very different. The length dimension of a cell in circumferential direction,
called the microstructure length parameter , is assumed to be very large
compared with the maximum shell thickness and very small as compared to
the midsurface curvature radius as well as the length dimension of the shell
midsurface in the direction of tolerant periodicity. Examples of such shells are
shown in Figs. 4.1 and 4.2. At the same time, the shells have constant structure in
axial direction. On the microscopic level , the geometrical, elastic and inertial
properties of these shells are determined by highly oscillating, non-continuous
and tolerance-periodic functions in circumferential direction. Roughly speaking,
by tolerance-periodic functions we shall mean functions which in every cell can be
approximated by periodic functions.

On the other hand, on the macroscopic level , the averaged properties of
the shells are described by functions being continuous and slowly varying
along circumferential direction. It means that the tolerance-periodic shells under
consideration can be treated as made of functionally graded materials (FGM),
cf. Suresh and Mortensen [110], and called functionally graded shells.Moreover,
since macroscopic properties of the shells are graded in direction normal to
interfaces between constituents, this gradation is referred to as the transversal
gradation.

The subject-matter of this doctoral thesis is the analytical modelling of
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dynamic problems for the shells under consideration and the investigation of
the effect of a cell size on the macroscopic and microscopic shell behaviour (the
length-scale effect).

The considerations will be based on the well-known Kirchhoff-Love theory of
thin linearly elastic cylindrical shells in which terms depending on the second
metric tensor of the shell midsurface are neglected in the formulae for curvature
changes, cf. Kirchhoff [49], Love [60], Kaliski [46]. For periodic or tolerance-periodic
shells, the exact partial differential equations of this theory include strongly
oscillating, non-continuous and periodic or tolerance-periodic coefficients. That is
why the direct application of these equations to investigations of specific problems
is non-effective even using computational methods.

To obtain averaged equations with constant or continuous and slowly-varying
coefficients, a lot of different approximate modelling methods have been proposed.
Periodic and tolerance-periodic structures are usually described using homogenized
models derived by means of asymptotic methods, cf. Chapter 2. These models
represent certain equivalent structures with constant or slowly varying material
properties. Unfortunately, in models of this kind the effect of the microstructure
size on the overall shell behaviour is neglected in the first approximation which is
usually employed.

An alternative (i.e. non-asymptotic) approach to the modelling of micro-
heterogeneous media was proposed by Woźniak in a series of papers and
summarized in monographs by Woźniak and Wierzbicki [168], Woźniak, Michalak
and Jędrysiak (eds.) [166], Woźniak et al. (eds.) [164]. This technique is called the
tolerance modelling method. The concept of tolerance relations between
points and real numbers related to the accuracy of the performed measurements
and calculations plays a leading role in formulation of this technique. The
tolerance relations are determined by the tolerance parameters. The second
basic concepts of this method is a function slowly-varying within a cell. It
is a function which, together with its derivatives occurring in the problem under
consideration, can be treated as constant within every cell. The basic assumptions
of this modelling technique are called the micro-macro decomposition and
the tolerance averaging approximation. The first assumption states that the
displacement fields can be decomposed into macroscopic and microscopic parts.
The macroscopic part is represented by unknown averaged slowly-varying
displacements. The highly oscillating microscopic part is described by the
periodic or tolerance-periodic known fluctuation shape functions and by
unknown slowly-varying fluctuation amplitudes . The second assumption
states that in the course of modelling the terms of the orders of tolerance
parameters are neglected. The fundamental concepts and assumptions of the
tolerance modelling procedure are presented in Chapter 3. Models obtained in
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the framework of the tolerance modelling procedure are called the tolerance
models. The governing equations of the these models have coefficients
which are constant or continuously slowly-varying and depend on the
microstructure size. Hence, the main advantage of the tolerance models is that
in contrast to asymptotic models they make it possible to describe the effect of
microstructure size on a shell behaviour not only on the micro-structural level but
also on the macroscopic one.

The overview of the modelling techniques applied to micro-heterogeneous
structures is given in Chapter 2.

In the presented dissertation, the tolerance averaging technique
is adopted to the modelling of the known governing equations of
Kirchhoff-Love theory of thin linearly elastic cylindrical shells . These
equations will be taken in the form of Euler-Lagrange equations generated by the
Lagrange function describing behaviour of the shells in the framework of the theory
under consideration. Functional coefficients of this function are tolerance-periodic,
highly oscillating and often non-continuous in circumferential direction. The
tolerance averaging of the Lagrange function under micro-macro decomposition
and under the tolerance averaging approximation leads to the averaged form
of this function with continuous and slowly-varying coefficients depending on
the microstructure size. Then, applying the principle of stationary action to the
tolerance-averaged action functional defined by means of the averaged lagrangian,
we arrive at the governing equations of tolerance model for the shells under
consideration. Coefficients of these equations are continuous and slowly-varying
along arc coordinate and some of them depend on the microstructure length
parameter. It means that the resulting tolerance model equations describe the
effect of the cell size on the overall shell dynamics.

In order to evaluate the length-scale effect in some special dynamic
problems, the results obtained by applying the tolerance modelling
procedure are compared with those derived from asymptotic model of the
functionally graded shells under consideration. In order to formulate this
model, a certain new approach to the asymptotic modelling of micro-heterogeneous
media proposed in Woźniak et al. (eds.) [164] is adopted. This new approach, called
the consistent asymptotic modelling , does not take into account the influence
of the microstructure size on the overall shell behaviour.

The dynamic problems for the shells under consideration are also
modelled by means of combined procedure, proposed by Woźniak et
al. (eds.) [164 ], in which tolerance non-asymptotic and consistent
asymptotic techniques are combined together into a new procedure. An
important advantage of the combined model is that under special conditions imposed
on the fluctuation shape functions it makes it possible to separate the macroscopic
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description of some special problems from their microscopic description. Moreover,
it will be also shown that in the framework of combined model we can analyse
the near-boundary and the near-initial phenomena related to the specific form of
boundary and initial conditions imposed on micro-fluctuations of displacements.

The derived averaged models will be applied to investigations of
the length-scale effect in some special problems of dynamics for the
transversally graded shells under consideration. Because equations of the
proposed models have slowly-varying functional coefficients hence it is difficult to
find exact analytical solutions to these equations. To solve the vibration or wave
propagation problems discussed here the known Ritz or Galerkin approximate
methods will be applied.

1.2. Aims of the doctoral thesis

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with a
smooth, slowly varying transversal gradation of macroscopic properties and with
a tolerance-periodic microstructure in circumferential direction are analysed.

The first aim of this doctoral thesis is to formulate and discuss three
new mathematical averaged models for the analysis of selected dynamic
problems in the cylindrical shells under consideration:

• tolerance model with continuous and slowly-varying coefficients
depending on a cell size , derived by applying a certain new approach to
the tolerance modelling of micro-heterogeneous solids presented in Woźniak
et al. (eds.) [164],

• consistent asymptotic model with continuous and slowly-varying
coefficients being independent of the microstructure size , obtained
by using a certain new approach to the asymptotic modelling of
micro-heterogeneous media proposed in Woźniak et al. (eds.) [164],

• combined asymptotic-tolerance model with continuous and
slowly-varying coefficients depending on the cell size , derived
by applying the combined modelling which includes both the tolerance and
asymptotic procedures; this technique has been presented in Woźniak et al.
(eds.) [164]; the main advantage of this model is that it makes it possible to
study micro-dynamics of the tolerance-periodic shells independently of their
macro-dynamics.

The resulting equations of the above models will be presented in the form
of Euler-Lagrange equations and also in the form of the dynamic equilibrium
equations together with the constitutive relations.
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The second aim of the dissertation is to apply the tolerance and
asymptotic models derived here to evaluation of the length-scale effect
in some special problems dealing with dynamics (free vibrations) of the
micro-heterogeneous shells under consideration.

The third aim is to apply the combined model to the analysis of
length-scale effect in some special problems for micro-dynamics of the
shells under consideration. It will be shown that the combined model
makes it possible to separate the macroscopic description of some
special problems from the microscopic description of these problems.

Theses of the doctoral dissertation are:

• The tolerance and the consistent asymptotic models of dynamic problems
for the functionally graded shells under consideration derived here can be
successfully applied to analyse the macroscopic behaviour of these shells.
Moreover, the tolerance model makes it possible to determine and study
some phenomena related to existence of microstructure length-scale effect,
e.g. the occurrence of the additional higher-order cell-dependent free vibration
frequencies.

• The proposed combined asymptotic-tolerance model of dynamic problems for
the shells under consideration allows us to successfully study cell-dependent
micro-vibrations of the tolerance-periodic shells independently of the shells’
cell-independent macro-vibrations. Moreover, this model makes it possible
to analyse length-scale effect in wave propagation problems as well as
in boundary layer phenomena related to micro-fluctuations of the shell
displacements.

1.3. Scope of the doctoral thesis

The dissertation begins with a list of symbols.
The object and aim of the doctoral dissertation are specified in Chapter 1.
An overview of the modelling techniques applied to periodic/tolerance-periodic

structures is given in Chapter 2.
To make considerations self-consistent, in the subsequent chapter we shall

outline the basic concepts and assumptions of the tolerance modelling technique
and of the consistent asymptotic approach, following monographs by Woźniak et
al. (eds.) [164] and Ostrowski [90].

The shell geometry is described and the cell is defined in Chapter 4. In this
chapter there are also shown the governing equations of the Kirchhoff-Love theory
of thin elastic cylindrical shells being a starting point of the modelling procedures.
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In Chapter 5, the tolerance, asymptotic and combined models for the analysis
of special dynamic problems in functionally graded shells under consideration are
derived and discussed in detail.

In Chapter 6, there are shown applications of the proposed tolerance and
asymptotic models to analysis of the length-scale effect in some special problems
for dynamics of the shells under consideration. The comparison and discussion
of the results are presented. Moreover, some results derived in the framework of
the tolerance and asymptotic models are compared with those obtained from the
commercial software Ansys based on the finite element method.

In Chapter 7, there are shown applications of the proposed combined
asymptotic-tolerance model to investigations of selected problems of the shell
micro-dynamics as cell-dependent free micro-vibrations, the long wave propagation
problem related to micro-fluctuations and certain boundary-layer phenomena.

Final remarks and conclusions are formulated in the last chapter. This
chapter ends with a list of the most important original elements of the doctoral
dissertation and the anticipated directions of further research.

The doctoral thesis is finished by Appendix, the list of references, summary, and
summary in Polish. Appendix deals with calculations of coefficients in averaged
models equations describing the dynamic problems discussed in the application
part of this dissertation, i.e. in Chapters 6, 7.

The functionally graded shells being objects of considerations in this doctoral
dissertation are widely applied in civil engineering, most often as roof girders and
bridge girders. They are also widely used as elements of housings of reactors and
tanks. Micro-heterogeneous shells having small length dimensions are elements of
air-planes, ships and machines.

Note, that some of the results obtained during the realization of the topic of the
doctoral dissertation have been published by Tomczyk and Szczerba in [146-151].

1.4. Summary of notations

Throughout the book the index notation is used.
Sub- and superscripts α, β, . . . take the values 1, 2 and are related to

orthonormal parametrization
(
x1, x2

)
introduced on the shell midsurface;

summation convention holds.
Non-tensorial superscripts A,B, . . . and a, b, . . . run over sequences 1, 2, . . . , N

and 1, 2, . . . , n, respectively, where N ≥ 1 and n ≥ 1; the summation convention
with respect to these indices holds.

The partial differentiation related to xα is represented by ∂α. Moreover, it is
denoted ∂α...δ ≡ ∂α . . . ∂δ. Differentiation with respect to time coordinate t ∈ [t0, t1]
is represented by the overdot.
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Symbol O (δ), δ > 0, stands for an arbitrary function of δ such that O (δ) 6= 0
for every δ and δ → 0 implies O (δ)→ 0, O (δ) /δ → c for some c 6= 0.
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2. Overview of modelling techniques applied
to periodic and tolerance-periodic
structures

The doctoral thesis deals with micro-heterogeneous cylindrical shells which, on
the micro level, consist of a very large number of separated small elements (cells)
perfectly bonded to each other and regularly distributed along circumferential
direction. The adjacent cells are of nearly identical geometrical and material
properties, but the distant elements can be very different. On the macro level,
this tolerance-periodic microstructure implies a macroscopically inhomogeneous
structures but with a continuous and slow variation of averaged properties. Such
shells are called functionally graded shells. Note, that if the geometrical
and material structure of every cell is identical then we deal with periodically
heterogeneous shells having constant macroscopic (averaged) properties.

The mechanical/thermal behaviour of periodic or tolerance-periodic
(functionally graded) micro-heterogeneous solids (e.g. beams, plates, shells,
laminates) is described by means of partial differential equations with periodic
or tolerance-periodic, highly oscillating and often discontinuous functional
coefficients. Hence, they cannot be directly applied to investigations of
engineering problems. To obtain averaged equations with constant or continuously
slowly varying coefficients, a lot of different approximate modelling methods
for composites of this kind have been proposed. We shall restrict our
considerations to the best known analytical procedures . It has to be
emphasized that functionally graded structures are often analysed in the
framework of averaging approaches similar to those applied to periodic structures,
which on the macro level are macroscopically homogeneous.

The overview of modelling techniques used for the analysis of mechanical,
thermal or coupled thermo-mechanical problems for periodic as well as functionally
graded composite materials and structures can be found in the monographs by
Bakhvalov and Panasenko [5], Bensoussan et al. [9], Jikov et al. [42], Jones [43],
Sanchez-Palencia [108], Lewiński and Telega [59], Suresh and Mortensen [110],
Nemat-Nasser and Hori [89], Woźniak and Wierzbicki [168], Woźniak, Michalak
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and Jędrysiak (eds.) [166], Woźniak et al. (eds.) [164] and also in paper by Reiter
et al. [105].

Mathematical modelling methods related to periodically or locally
periodically (called tolerance-periodically in the presented doctoral dissertation)
micro-heterogeneous composites can be divided into general and special
modelling techniques. The general modelling methods concern large class of
micro-heterogeneous media without the specification of the micro-heterogeneity.
On the other hand the special modelling procedures are formulated for certain
selected forms of the micro-heterogeneity and can be applied only for some specific
forms of coefficients in partial differential equations describing behaviour of the
micro-inhomogeneous structures.

We mention here two special modelling techniques: the effective stiffness
theory , cf. Herrmann and Achenbach [21], and the Floquet-Bloch wave theory ,
cf. Stoker [109], Lee [55], which are applied to the analysis of wave propagation
problems for one-dimensional periodic structures such as layered media or for
periodically and directionally reinforced composites. Both these methods make it
possible to take into account the dispersion phenomena in the micro-heterogeneous
solids. Some results obtained by applying approaches mentioned above are
discussed in Achenbach, Sun and Herrman [2], Herrmann, Kaul and Delph [22],
Christensen [13], Kohn, Krumhansl and Lee [50].

Among the general mathematical modelling methods we can mention
homogenization for periodic and local-periodic structures,
higher-order homogenization for periodic and local-periodic structures,
homogenization by micro-local parameters, tolerance modelling method.

Periodic/tolerance-periodic structures are usually described using
homogeneized models derived by means of asymptotic methods . These
models represent certain equivalent structures with constant or continuously
slowly varying geometrical and material properties. Homogenization is based on
a formal limit passage with length dimensions of a cell to zero. Thus, in the first
approximation the homogenized equations neglect the effect of a microstructure
size on the macroscopic behaviour of the periodic/tolerance-periodic structures
(the length-scale effect). This effect plays an important role mainly in the
vibration and wave propagation analysis as well as in dynamical stability
problems.

The mathematical foundations of this modelling technique can be found
in Bakhvalov and Panasenko [5], Bensoussan et al. [9], Jikov et al. [42],
Jones [43], Panasenko [95], Sanchez-Palencia [108]. Applications of the
asymptotic homogenization procedure to modelling of stationary and
non-stationary phenomena for periodically micro-heterogeneous shells
(plates) are presented in a large number of contributions . From the
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extensive list on this subject we can mention publications by Andrianov et al.
[4], Caillerie [11], Challagulla et al. [12], Georgiades et al. [19], Kalamkarov
[45], Lewiński [56], Lewiński and Telega [58, 59], Lutoborski [61], Kohn and
Vogelius [51]. Local-periodic structures, which can be treated as made of
functionally graded materials, can also be analysed in the framework
of homogenization methods . Using the known concept of the G-convergence
approach, which is a generalization of the homogenized procedure, cf. Jikov et al.
[42], homogenization models for local-periodic structures can be derived.
These models are used to investigate various problems for functionally graded
materials in many papers, e.g. in Miller and Lanutti [83], Itoh, Takahashi and
Takano [24]. Some other methods applied in the modelling of functionally graded
media are discussed in the paper by Reiter et al. [105] and in monographs by Suresh
and Mortensen [110], where extensive lists of references can be found. Asymptotic
approach to vibrations of functionally graded cylindrical shells can be found in
Pradhan et al. [101], Rahimi, Ansari and Hemmatnezhad [104], Isvandzibaei,
Jamaluddin and Hamzah [23], Young-Wann Kim [169].

As mentioned above, in the first approximation, the homogenized equations
neglect the effect of a microstructure size on the macroscopic behaviour of the
periodic/tolerance-periodic structures. In order to derive the length-scale models,
the higher-order homogenization has to be applied. The second or higher
order approximations must be formulated in the framework of this approach.
However, models of this kind have a complicated analytical form. Hence, their
applications to the investigations of boundary-value problems often leads to a
large number of boundary conditions, which may be not well motivated from the
physical viewpoint, cf. Fish andWen Chen [18], Lewiński and Kucharski [57], where
length-scale effect in periodic composites is analysed, Aboudi et al. [1], where effects
related to microstructure of functionally graded composites are studied.

Homogenization can be also realized using a concept of micro-local
parameters . This approach is based on some postulated a priori physical
assumptions. Governing equations of the homogenized model are given in terms
of the averaged unknown fields and certain extra unknowns called microlocal
parameters . Homogenization by micro-local parameters was proposed by
Woźniak [160, 161], Matysiak and Woźniak [72]. Averaged models of this kind were
applied for solving of various mechanics/thermomechanics problems in a series of
papers, e.g. by Matysiak and Nagórko [67, 68] and by Wągrowska [153], where some
stationary problems of multilayered elastic plates and of elastic-plastic composites
are investigated, respectively; by Matysiak [65], Matysiak and Ukhanska [71],
Matysiak and Yevtushenko [73], Matysiak, Pauk and Yevtushenko [69], Matysiak
and Perkowski [70] or Kulchytsky-Zhyhailo, Matysiak and Perkowski [54], where
heat conduction in periodically layered composites is studied; by Matysiak,
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Mieszkowski and Perkowski [66], where surface waves in a periodic two-layered
half-space are analysed; by Kaczyński and Matysiak [44], where crack problems in
micro-periodic reinforced elastic composite are investigated.

The periodically micro-heterogeneous shells (plates) are also
modelled as homogeneous orthotropic structures , cf. Ambartsumyan [3],
Brush and Almroth [10], Grigoluk and Kabanov [20]. The orthotropic model
equations with coefficients independent of the microstructure length parameter can
not be used to the analysis of phenomena related to existence of microstructure
length-scale effect, e.g. the dispersion of waves, the occurrence of additional
higher-order free vibration frequencies and additional higher-order critical forces
depending on the cell size.

A new non-asymptotic approach applied to the modelling of mechanical and
thermal phenomena in continuum and discrete micro-heterogeneous structures
or composite materials was proposed and developed by Woźniak in a large
number of papers, e.g. [162, 163] and summarized in the monographs by Woźniak
and Wierzbicki [168], Woźniak, Michalak and Jędrysiak (eds.) [166], Woźniak et
al. (eds.) [164]. Mathematical formulation of this approach can be also found
in Ostrowski [90]. This technique, called the tolerance modelling method ,
is based on the concept of tolerance relations between points and real
numbers related to the accuracy of the performed manipulations or calculations.
The tolerance relations are determined by the tolerance parameters. The
other basic concepts of this procedure are those of slowly-varying functions,
tolerance-periodic functions, fluctuation shape functions and the
averaging operation. The tolerance modelling is based on two assumptions.
The first of them is called the tolerance averaging approximation and makes
it possible to neglect terms of an order of tolerance parameters. The second
one is termed the micro-macro decomposition. This assumption states that
the kinematic or thermal fields occurring in the problem under consideration
can be decomposed into unknown averaged displacements or temperature,
slowly-varying in directions of periodicity or tolerant periodicity and highly
oscillating fluctuations caused by a periodic or tolerance-periodic structure of the
composite medium. These kinematic/thermal fluctuations are represented by the
finite series of products of the known highly oscillating, periodic/tolerance-periodic
fluctuation shape functions and unknown fluctuation amplitudes slowly-varying in
periodicity/tolerance-periodicity directions. The cell-dependent fluctuation shape
functions represent either the principal modes of free periodic vibrations of a cell or
physically reasonable approximations of these modes. Hence, they can be obtained
as solutions to certain periodic eigenvalue problems related to free cell vibrations.
In stationary problems, these functions can be treated as the shape functions
resulting from the finite element periodic discretization of the cell. The choice of
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these functions can be also based on the experience or intuition of the researcher.
The main modelling concepts and assumptions mentioned above are explained in
Chapter 3 of this doctoral thesis. Governing equations of the tolerance models
have constant or slowly-varying coefficients depending also on the microstructure
size. It means that the tolerance modelling makes it possible to analyse the
effect of a cell size on the overall behaviour of the composite medium.

Applications of the tolerance modelling technique to investigations of selected
elastodynamic and/or stability problems for various periodic structures are
shown in a large number of contributions, e.g. for lattic-type or cellular media by
Cielecka [14], Cielecka, Woźniak Cz. and Woźniak M. [15]; for Euler-Bernoulli-type
beams by Mazur-Śniady [74], Mazur-Śniady, Śniady and Zielichowski-Haber [75],
Świątek, Jędrysiak and Domagalski [112]; for Kirchoff-type plates by Jędrysiak
[25-30], Nagórko and Woźniak [88], Nagórko [84-86]; for Hencky-Bolle-type plates
by Baron [6-8], Jędrysiak and Paś [37]; for wavy-type plates by Michalak, Woźniak
Cz. and Woźniak M. [82], Michalak [76, 77]; for three-layered plates with inert
core by Marczak and Jędrysiak [64]; for periodic cylindrical shells by Tomczyk
[115-136], Tomczyk and Woźniak [152], Tomczyk and Mania [145], Tomczyk and
Litawska [140-144], Tomczyk et al. [137, 138]. Note, that in papers [140-144] the
dynamic or stability problems are investigated in the framework of a certain
extended version of the classical tolerance modelling technique. This version,
proposed by Tomczyk and Woźniak in [152], is based on a new notion of weakly
slowly-varying function being an extension of the known more restrictive
concept of slowly-varying functions occurring in the classical tolerance approach.
General tolerance models derived by means of this extended tolerance averaging
procedure include a bigger number of length-scale terms than those formulated by
applying the classical tolerance modelling.

Elastostatics of thin periodically stiffened plates with moderately large
deflections was studied by Domagalski and Gajdzicki [16].

Some thermal/thermal-elasticity problems of micro-periodic composites
are also investigated by applying the tolerance modelling technique. Heat
conduction problems were studied by Woźniak Cz., Baczyński and Woźniak M.
[165], Łaciński and Woźniak [62], Nagórko and Piwowarski [87], Ostrowski and
Jędrysiak [91], Ostrowski and Michalak [92], Rychlewska, Szymczyk and Woźniak
[106], Wierzbicki and Mazewska [155], Wierzbicki [154], Tomczyk and Gołąbczak
[139].

In the last years the tolerance modelling technique is adopted and extended
for non-periodic structures, e.g. made of a functionally graded material. Tolerance
averaging of equations describing behaviour of those structures leads to equations
with continuous and slowly-varying coefficients depending of the microstructure
size.
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Tolerance models of dynamic or stability problems for different
functionally graded structures are proposed in many contributions , e.g.
for laminates by Rychlewska and Woźniak [107], Szymczak and Woźniak [111];
for thin Kirchoff-type transversally graded plates by Kaźmierczak and Jędrysiak
[47, 48], Jędrysiak and Kaźmierczak-Sobińska [35], Jędrysiak [32-34]; for thin
longitudinally graded plates by Michalak [78, 79], Wirowski [156-159], Michalak
and Wirowski [81], Jędrysiak and Michalak [36]; for laminated plates by Jędrysiak,
Rychlewska and Woźniak [41]; for laminated shells by Woźniak, Rychlewska and
Wierzbicki [167]; for thin functionally graded plates with system of ribs by Rabenda
and Michalak [102], Michalak and Rabenda [80]; for transversally or longitudinally
graded cylindrical shells by Tomczyk and Szczerba [146-151].

Applications of the tolerance averaging technique to analyse heat
conduction or thermoelastic problems in functionally graded structures
are presented in a large number of papers and books , e.g. for longitudinally
graded hollow cylinder by Ostrowski and Michalak [92-94], Ostrowski [90]; for
transversally graded laminates by Radzikowska and Jędrysiak [103], Jędrysiak and
Radzikowska [39, 40], Pazera and Jędrysiak [99, 100], Jędrysiak and Pazera [38].

Various mechanical and thermal as well as coupled thermo-mechanical
problems for functionally graded laminates, thin plates and shallow shells are
discussed by Jędrysiak in monograph [31], where the extended list of references on
this topic can be found.

It has to be emphasized that by means of a certain formal analytical procedure
we can pass directly from the tolerance models to new asymptotic ones. These
asymptotic models can be also obtained independently of tolerance modelling
by applying the consistent asymptotic averaging proposed by Woźniak in
[164]. In this approach, the kinematic/thermal fields occurring in the problem
under consideration are decomposed into highly-oscillating part depending on a
certain parameter ε ∈ (0, 1] and averaged part independent of this parameter. The
highly-oscillating part is determined by the known fluctuation shape functions,
which similarly as in the tolerance modelling can be obtained as solutions to
certain periodic eigenvalue problems or by means of the finite element periodic
discretization of the cell or by means of experience/intuition of the researcher.
If these functions are not derive as solutions to eigenvalue problems then the
effective moduli are obtained without specification of the periodic cell
problems. It is a very important advantage of these asymptotic models because in
most cases obtaining the solutions to the cell problems is not easy. This situation is
different from that occurring in the known asymptotic homogenization approach,
where only solutions to the periodic cell problems make it possible to define the
effective moduli of the considered structure. It is worth mentioning that not
only the consistent but also the semi-consistent asymptotic modelling procedure is
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formulated by Woźniak in monograph [164]. It has to be emphasized that contrary
to consistent asymptotic models equations, the resulting differential equations of
the semi-consistent asymptotic models describe the effect of microstructure size
on the overall medium behaviour. Many applications of the asymptotic modelling
techniques mentioned above to various problems in microstructured media are
shown in [164].

In the presented doctoral thesis, the attention is focused on the
continuum mathematical modelling of dynamic problems for tolerance-periodically
micro-heterogeneous cylindrical shells. However, some analytical results are
compared with numerical those obtained using the commercial computer software
Ansys based on the finite element method (FEM). For this reason, it is worth
mentioning here papers by Pawlus [96-98], where stability or dynamic problems
for annular layered plates with heterogeneous structure in radial or transversal
direction are modelled using commercial computer software Abaqus based on
FEM. We also mention publications by Kołakowski and Mania [52], Mania [63],
Kołakowski and Teter [53], Teter, Mania and Kołakowski [114], Teter, Kołakowski
and Mania [113], where static/dynamic buckling/postbuckling problems for
functionally graded thin plates/shells subjected to mechanical/thermal/combined
dynamic-thermal loads are modelled with application of FEM software Ansys.
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3. Concepts and assumptions of the
tolerance modelling technique

The partial differential equations or the pertinent integral functionals applied
to problems of micro-heterogeneous periodic or tolerance-periodic shells include
functional coefficients, which are periodic or tolerance-periodic, highly oscillating
and non-continuous. The averaging of these equations or integral functionals
realized by using the tolerance modelling technique leads to mathematical
models with constant or continuously slowly-varying coefficients depending on the
microstructure size, i.e. on the diameter of a basic cell. Hence, the tolerance model
equations make it possible to analyse the effect of a cell size on the overall shell
behaviour (the length-scale effect).

The averaging of the partial differential equations or the pertinent
integral functionals with highly oscillating, non-continuous and periodic or
tolerance-periodic coefficients can be also realized using asymptotic procedures,
cf. Bensoussan et al. [9], Jikov et al. [42], Woźniak et al. (eds.) [164]. Asymptotic
modelling used for these equations and integral functionals leads to mathematical
models with constant or continuously slowly varying coefficients. However, the
asymptotic procedures are performed by limit passages with the microstructure
length to zero. Hence, the resulting equations are not able to describe the length
scale phenomena.

In order to take into account the length-scale effect in dynamic problems for
functionally graded shells being object of considerations in the presented doctoral
dissertation, the mathematical, non-asymptotic tolerance modelling procedure is
applied.

Below, i.e. in Subsections 3.1 and 3.2, the basic concepts and assumptions of
this tolerance modelling technique are presented, following monographs by Woźniak
and Wierzbicki [168], Woźniak, Michalak and Jędrysiak (eds.) [166], Woźniak et
al. (eds.) [164], Tomczyk and Woźniak [152], Ostrowski [90].

Moreover, the general line of the consistent asymptotic modelling procedure
proposed by Woźniak in [164] and applied in this dissertation is outlined in
Subsection 3.3.
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3.1. Fundamental concepts of the tolerance modelling
procedure

The fundamental concepts of the tolerance modelling approach under consideration
are those of two tolerance relations between points and real numbers determined
by tolerance parameters, slowly-varying functions, tolerance-periodic functions,
fluctuation shape functions and the averaging operation.

3.1.1 Tolerance relations

The leading role in formulation of the tolerance modelling technique plays the
concept of tolerance relation. We shall introduce two special tolerance relations.

Tolerance relation between points

Let Ω be a regular region in physical space Em and λ be a positive real number.
Points x ≡ (x1, . . . , xm), y ≡ (y1, . . . , ym) belonging to Ω are said to be in tolerance

relation determined by λ, x
λ
≈ y, if and only if the distance between points x, y

does not exceed λ, i.e. ||x− y||Em ≤ λ.

Tolerance relation between real numbers

Let δ̃ be a positive real number. Real numbers µ, ν are said to be in tolerance

relation determined by δ̃, µ
δ̃
≈ ν, if and only if |µ− ν| ≤ δ̃.

Positive parameters λ, δ̃ are called tolerance parameters.
Tolerance parameter λ was introduced by Zeeman [170] and the tolerance

relation
λ
≈ was interpreted from a physical point of view as a certain

indiscernibility relation. Parameter δ̃ introduced by Fichera [17] was physically
interpreted as a certain "upper bound for negligibles".

3.1.2 Slowly-varying functions

We recall that Ω is a regular region in Em, points of Ω are denoted by
x ≡ (x1, . . . , xm) and y ≡ (y1, . . . , ym). Let Ξ be a regular region in En−m for
n ≥ m. Points of Ξ are denoted by ξ ≡ (ξ1, . . . , ξn−m). If n = m then Ξ and ξ drop
out from considerations. Let ∂ stand for gradient operator in Ω; ∂ = (∂1, . . . , ∂m),
∂i = ∂/∂xi, i = 1, 2, . . . ,m. Denote by ∂k the k-th gradient in Ω.

Define a closed subset ∆ of Em

∆ ≡ [−λ1/2, λ1/2]× . . .× [−λm/2, λm/2],
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where λ1 > 0, . . . , λm > 0. By λ we denote diameter of ∆, which is assumed to be
sufficiently small when compared to the smallest characteristic length dimension
of Ω. Let us also denote

∆(x) ≡ x + ∆, Ω∆ ≡ {x ∈ Ω : ∆(x) ⊂ Ω}.

Subsequently, subset ∆ of Em will be called the basic cell with m as a cell
dimension. Every ∆(x), x ∈ Ω∆, will be referred to the cell in Ω with the centre
at x, Ω∆ is called the set of all centers.

Let F (·) ∈ CR(Ω), where CR(Ω) is a space of functions being continuous,
bounded and differentiable in Ω ⊂ Em together with their gradients up to the
R-th order. Nonnegative integer R is assumed to be specified in every problem
under consideration. Note, that function F can also depend on ξ ∈ Ξ (if n ≥ m)
and time coordinate t as parameters. Let us denote by δ ≡ (λ, δ0, δ1, . . . , δR) the set
of tolerance parameters. The first of them represents the distances between points
in Ω, the second one and the k -th one, k = 1, 2, . . . , R, are related to the differences
in appropriate space between the values of function F (·) and its gradient ∂kF (·)
in points x,y belonging to Ω such that |x− y| ≤ λ.

Function F (·) will be referred to as the slowly-varying of the R-th kind (with
respect to cell ∆ and tolerance given by δ ≡ (λ, δ0, δ1, . . . , δR)), if and only if the
following two conditions are satisfied

(i)
(
∀(x,y

)
∈ Ω2)[(x

λ
≈ y)⇒ F (x)

δ0≈ F (y) and

∂kF (x)
δk≈ ∂kF (y), k = 1, 2, . . . , R],

(ii) (∀x ∈ Ω)

[
λ
∣∣∣∂kF (x)

∣∣∣ δk≈ 0, k = 1, 2, . . . , R

]
.

(3.1)

Under above conditions we shall write F ∈ SV R
δ (Ω,∆).

In the applications of the tolerance modelling, tolerance parameter λ is known
a priori as a certain microstructure length, whereas values of tolerance parameters
δ0, δ1, . . . , δR can be determined only a posteriori, i.e. after obtaining solution to
the initial-boundary value problem under consideration.

Note, that a new notion of the weakly slowly-varying function F (·),
F ∈ WSV R

δ (Ω,∆), being an extension of the concept of slowly-varying function
given above, has been introduced by Tomczyk and Woźniak in [152]. For the
weakly slowly-varying function the first from conditions (3.1) is satisfied only.
Tolerance model equations derived by applying the less restrictive concept of
weakly slowly-varying function contain a bigger number of terms depending on
a cell size than the model equations obtained by means of slowly-varying function
and hence they make it possible to investigate the length-scale effect in more detail.

In the present work the considerations will be based on the notion of
slowly-varying function.
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3.1.3 Tolerance-periodic functions

An essentially bounded and weakly differentiable function f defined on Ω ∈ Em,
which can also depend on ξ ∈ Ξ (if n ≥ m) and time coordinate t as parameters,
is called tolerance-periodic of the R-th kind with respect to cell ∆ and tolerance
parameters δ ≡ (λ, δ0), if for every x ∈ Ω∆ there exists ∆-periodic function f̃

such that f |∆(x) ∩ Dom f and f̃
∣∣∆(x) ∩ Dom f̃ are indiscernible in tolerance

determined by δ ≡ (λ, δ0). Roughly speaking, function f is tolerance-periodic if
its values in an arbitrary cell ∆(x) can be approximated, with sufficient accuracy,
by the corresponding values of a certain ∆-periodic function f̃ (x, z), z ∈ ∆ (x),
x ∈ Ω∆. Function f̃ is a ∆-periodic approximation of f in ∆(x). For function
f(·) being tolerance-periodic together with its derivatives up to the R-th order,
we shall write f ∈ TPR

δ (Ω,∆), δ ≡ (λ, δ0, δ1, . . . , δR). We recall that nonnegative
integer R is assumed to be specified in every problem under consideration. It should
be noted that for periodic structures function f̃ (x, ·) has the same analytical
form in every cell ∆(x) with a centre at x ∈ Ω∆. Hence, f̃ is independent
of x and we have f̃ = f̃(z), z ∈ ∆ (x) ,x ∈ Ω∆. In the general case, i.e. for
tolerance-periodic structures (i.e. structures which in small neighbourhoods of
∆(x) can be approximately regarded as periodic) being objects of considerations
in this work, f̃ depends on x and hence we have f̃ = f̃(x, z), z ∈ ∆ (x), x ∈ Ω∆.

3.1.4 Fluctuation shape functions

Let h be a tolerance-periodic, highly oscillating function defined in Ω ∈ Em,
which is continuous together with gradients ∂kh, k = 1, 2, . . . , R − 1 and has
a piecewise continuous (or in special cases continuous) bounded gradient ∂Rh.
Tolerance-periodic function h(·) will be called the fluctuation shape function of
the R-th kind, h ∈ FSRδ (Ω,∆), if it depends on λ as a parameter and satisfies
conditions

h ∈ O
(
λR
)
, ∂kh ∈ O

(
λR−k

)
, k = 1, 2, . . . , R, (3.2)∫

∆(x)

µ̃(x, z)h̃(x, z)dz = 0, x ∈ Ω∆, (3.3)

for µ(·) being a certain positive valued tolerance-periodic function defined in Ω.
Note, that condition (3.3) holds in dynamic problems. In stationary problems this
condition is replaced by ∫

∆(x)

h̃(x, z)dz = 0.
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Moreover, for every F ∈ SV R
δ (Ω,∆) and h ∈ FSRδ (Ω,∆), function

ϑ(·) ≡ h(·)F (·) ∈ TPR
δ (Ω,∆) satisfies condition∫

∆(x)

∂kϑ̃(x, z)dz = F (x)

∫
∆(x)

∂kh̃(x, z)dz,

k = 0, 1, . . . , R, ∂0ϑ̃ ≡ ϑ̃, ∂0h̃ ≡ h̃.

(3.4)

3.1.5 Averaging operation

Let f be a function defined in Ω ∈ Em, which is integrable and bounded in every
cell ∆(x), x ∈ Ω∆. By the averaging of f(·) we shall mean function

〈
f(·)

〉
(x),

x ∈ Ω∆, defined by

〈f〉 (x) =
〈
f̃
〉

(x) ≡ 1

|∆|

∫
∆(x)

f̃(x, z)dz, x ∈ Ω∆, (3.5)

where f̃(x, ·) is a periodic approximation of f in ∆(x). It should be noted that if
f is a ∆-periodic function then 〈f〉 is constant in every ∆. For tolerance-periodic
structures, being objects of considerations in this work, 〈f〉 (x) is a slowly-varying
function in x.

3.2. Basic assumptions of the tolerance modelling
procedure

The tolerance modelling is based on two assumptions, which are strictly related
to the concepts of the tolerance-periodic, slowly-varying and fluctuation shape
functions. The first assumption is called the tolerance averaging approximation.
The second one is termed the micro-macro decomposition.

3.2.1 Tolerance averaging approximation

Let f be an arbitrary integrable tolerance-periodic function defined in Ω ∈ Em,
f ∈ TPR

δ (Ω,∆), and let F ∈ SV R
δ (Ω,∆). Moreover, for every F ∈ SV R

δ (Ω,∆) and
h ∈ FSRδ (Ω,∆) we define function ϑ(·) ≡ h(·)F (·) ∈ TPR

δ (Ω,∆). The tolerance
averaging approximation has the form〈

f∂kF
〉

(x) = 〈f〉 (x)∂kF (x) +O(δ), k = 0, 1, . . . , R, ∂0F (x) = F (x),

〈f∂rϑ〉 (x) =
〈
f∂r(hF )

〉
(x) = 〈f∂rh〉 (x)F (x) +O(δ), r = 1, 2, . . . , R.

(3.6)
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In the course of modelling, terms O(δ), δ ≡ (λ, δ0, δ1, . . . , δR), will be neglected.
Approximations (3.6) follow directly from conditions (3.1) satisfied by the

slowly-varying functions and from condition (3.4) which holds for the fluctuation
shape functions.

Let us observe that the slowly-varying functions can be regarded as invariant
under averaging.

Approximations given above will be applied in the modelling problems
discussed in this dissertation. For details the reader is referred to Woźniak and
Wierzbicki [168], Woźniak, Michalak and Jędrysiak (eds.) [166], Woźniak et al.
(eds.) [164], Tomczyk and Woźniak [152], Ostrowski [90].

3.2.2 Micro-macro decomposition assumption

The micro-macro decomposition states that the displacements fields, being
unknowns of the partial differential equations (or of pertinent integral functionals)
describing behaviour of microheterogeneous structure, can be decomposed into
unknown averaged (macroscopic) displacements being slowly-varying functions in
periodicity (or tolerant periodicity) directions and highly oscillating fluctuations.
Fluctuations of displacements are represented by the known highly oscillating
∆-periodic or tolerance-periodic fluctuation shape functions multiplied by unknown
fluctuation (microscopic) amplitudes slowly-varying in periodicity (or tolerant
periodicity) directions.

Micro-macro decompositions introduced in the problems discussed in this
doctoral dissertation are presented in Subsections 5.1 and 5.3.

3.3. Basic concepts and assumptions of the consistent
asymptotic modelling procedure

The fundamental concepts of the consistent asymptotic procedure are those of the
fluctuation shape functions and the averaging operation. These concepts have been
explained in Subsection 3.1. It means that the consistent asymptotic modelling
does not require notions of tolerance-periodic and slowly-varying functions.

The fundamental assumption imposed on the starting lagrangian under
consideration in the framework of the asymptotic approach is called the consistent
asymptotic decomposition. It states that the displacement fields occurring in the
lagrangian have to be replaced by families of fields depending on parameter
ε ∈ (0, 1] and defined in an arbitrary cell. These families of displacements
are decomposed into averaged part independent of ε and highly-oscillating part
depending on ε.
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Consistent asymptotic decomposition introduced in problems discussed in this
doctoral dissertation is presented in Subsection 5.2.
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4. Formulation of the modelling problem

4.1. Thin cylindrical shells with a tolerance-periodic
microstructure and a functionally graded
macrostructure

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with
a tolerance-periodic microstructure in circumferential direction are analysed. It
means that on the microscopic level, the shells under consideration consist
of many separated, small elements regularly distributed along circumferential
direction and perfectly bonded to each other (or to the homogeneous matrix).
These elements, called cells, are treated as thin shells. It is assumed that
the adjacent cells are nearly identical (i.e. they have nearly the same
geometrical, elastic and inertial properties), but the distant elements can be
very different. As examples we can mention cylindrical shells made of two kinds
of tolerance-periodically distributed materials as shown in Fig. 4.1a or shells
with tolerance-periodically spaced stiffeners as shown in Fig. 4.2a. Note, that
the ribbed shell shown in Fig. 4.2 can be treated on the micro-level as a shell
with not only tolerance-periodically distributed elastic and inertial properties, but
also with tolerance-periodically distributed geometrical properties. At the same
time, the shells considered here have constant structure in axial direction. On the
microscopic level, the geometrical, elastic and inertial properties of these shells are
determined by highly oscillating, non-continuous and tolerance-periodic functions
in circumferential direction.

On the other hand, on the macroscopic level, the averaged (macroscopic)
properties of the shells are described by functions being continuous and slowly
varying along circumferential direction. It means that on the macro-level the
tolerance-periodic shells under consideration can be treated as made of functionally
graded materials (FGM), cf. Suresh and Mortensen [110], and called functionally
graded shells, cf. Figs. 4.1b, 4.2b. Moreover, since effective properties of the shells
are graded in direction normal to interfaces between constituents, this gradation
is referred to as the transversal gradation.
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Figure 4.1: Fragment of the shell made of tolerance-periodically distributed two component
materials: a) the microscopic point of view b) the macroscopic point of view
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Figure 4.2: Fragment of the shell with two families of tolerance-periodically spaced stiffeners:
a) the microscopic point of view b) the macroscopic point of view
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We assume that x1 and x2 are coordinates parametrizing the shell
midsurface M in circumferential and axial directions, respectively. We denote
x ≡ x1 ∈ Ω ≡ (0, L1) and ξ ≡ x2 ∈ Ξ ≡ (0, L2), where L1, L2 are length dimensions
ofM , cf. Figs. 4.1 and 4.2. LetOx1x2x3 stand for a Cartesian orthogonal coordinate
system in the physical space E3 and denote x ≡ (x1, x2, x3). A cylindrical
shell midsurface M is given by M ≡

{
x ∈ E3 : x = r

(
x1, x2

)
,
(
x1, x2

)
∈ Ω× Ξ

}
,

where r(·) is the smooth invertible function such that ∂r/∂x1 · ∂r/∂x2 = 0,
∂r/∂x1 · ∂r/∂x1 = 1, ∂r/∂x2 ·∂r/∂x2 = 1. It means that onM we have introduced
the orthonormal parametrization, cf. Fig. 4.3. Note, that derivative ∂r/∂xα,
α = 1, 2, should be understood as differentiation of each component of r ∈ E3,
i.e. ∂r/∂xα =

[
∂r1/∂xα, ∂r2/∂xα, ∂r3/∂xα

]
.

Sub- and superscripts α, β, . . . run over sequence 1, 2 and are related to
midsurface parameters x1, x2; summation convention holds. Partial differentiation
related to xα is represented by ∂α, i.e. ∂α = ∂/∂xα. Moreover, it is denoted
∂α...δ ≡ ∂α . . . ∂δ. Differentiation with respect to time coordinate t ∈ I ≡ [t0, t1]
is represented by the overdot.

Denote by aαβ and aαβ the covariant and contravariant midsurface first
metric tensors, respectively. Under orthonormal parametrization introduced on
M , aαβ = aαβ are the unit tensors. Let bαβ stand for the covariant midsurface
second metric tensor. For the introduced parametrization b22 = b12 = b21 = 0 and
b11 = −r−1.

Let d(x) and r stand for the shell thickness and the midsurface curvature radius,
respectively.

The basic cell ∆ and an arbitrary cell ∆(x) with the centre at point x ∈ Ω∆

(Ω∆ is a set of all cell centres) are defined by means of

∆ ≡
[
−λ/2, λ/2

]
,

∆(x) ≡ x+ ∆ =
[
x− λ/2, x+ λ/2

]
,

x ∈ Ω∆, Ω∆ ≡ {x ∈ Ω : ∆(x) ⊂ Ω},
(4.1)

where λ is a cell length dimension in x ≡ x1-direction, cf. Figs. 4.1 and 4.2. The
microstructure length parameter λ satisfies conditions: λ/max(d) � 1, λ/r � 1
and λ/L1 � 1.
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Figure 4.3: Parametrization of the shell midsurface

Setting z ≡ z1 ∈
[
−λ/2, λ/2

]
, we assume that the cell ∆ has a symmetry axis

for z = 0. It is also assumed that inside the cell the geometrical, elastic and inertial
properties of the shell are described by symmetric (i.e. even) functions of argument
z. At the same time, these functions are independent of argument ξ ≡ x2 ∈ Ξ.

4.2. Fundamental equations

Denote by uα = uα(x, ξ, t), w = w(x, ξ, t), x ≡ x1 ∈ Ω ≡ (0, L1),
ξ ≡ x2 ∈ Ξ ≡ (0, L2), t ∈ I ≡ [t0, t1], the shell displacements in the directions
tangent and normal toM , respectively. Elastic properties of the shell are described
by shell stiffness tensors Dαβγδ(x), Bαβγδ(x). Let µ(x) stand for a shell mass
density per midsurface unit area. Let fα(x, ξ, t), f(x, ξ, t) be external forces per
midsurface unit area, respectively tangent and normal to M .

The considerations will be based on the well-known simplified linear
Kirchhoff-Love theory of thin elastic shells in which terms depending on the
midsurface second metric tensor bαβ are neglected in the formulae for curvature
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changes, cf. Kaliski [46]. In the framework of the shell theory under consideration,
strain energy function E(x, ξ, t), (x, ξ, t) ∈ Ω×Ξ× I, related to midsurface M has
the form

E =
1

2

(
Dαβγδεαβεγδ +Bαβγδκαβκγδ

)
, (4.2)

where the membrane ε = εαβ(x, ξ, t) and curvature κ = καβ(x, ξ, t),
(x, ξ, t) ∈ Ω× Ξ× I, strain tensors are

εαβ =
1

2
(∂βuα + ∂αuβ)− bαβw, καβ = −∂αβw. (4.3)

The kinetic energy function K = K(x, ξ, t) related to midsurface M and the
potential of external loadings F = F (x, ξ, t), (x, ξ, t) ∈ Ω × Ξ × I, for the shell
under consideration are given by

K =
1

2
µ(u̇αu̇βa

αβ + ẇẇ), (4.4)

F = fαuα + fw. (4.5)

We recall that aαβ in (4.4) is the first metric tensor of the shell midsurface M ,
which under orthonormal parametrization introduced on M is a unit tensor.

Let us introduce the action functional

A(uα, w) =

L1∫
0

L2∫
0

t1∫
t0

L(x, ξ, t, ∂βuα, uα, u̇α, ∂αβw,w, ẇ)dtdξdx, (4.6)

with lagrangian L being a highly oscillating function with respect to x, x ∈ Ω.
Lagrangian L has the well-known form

L = K − E + F, (4.7)

where kinetic energy K, strain energy E and potential of external loadings F are
given above.

Substituting (4.2)-(4.5) into (4.7) and taking into account that for the
parametrization introduced on the shell midsurface M , the components bαβ of
the second metric tensor of M are b22 = b12 = b21 = 0 and b11 = −r−1, we arrive
at Lagrange function (4.7) in the form

L =− 1

2

(
Dαβγδ∂βuα∂δuγ +

2

r
Dαβ11w∂βuα +

1

r2
D1111ww+

+Bαβγδ∂αβw∂γδw − µaαβu̇αu̇β − µẇ2

)
+ fαuα + fw.

(4.8)
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The principle of stationary action applied to A (4.6) leads to the following
system of Euler-Lagrange equations

∂β
∂L

∂(∂βuα)
− ∂L

∂uα
+
∂

∂t

∂L

∂u̇α
= 0,

− ∂αβ
∂L

∂(∂αβw)
− ∂L

∂w
+
∂

∂t

∂L

∂ẇ
= 0,

(4.9)

From equations (4.9) combined with (4.8), we obtain the fundamental equations
of the shell theory under consideration in the explicit form

∂β(Dαβγδ∂δuγ) + r−1∂β(Dαβ11w)− µaαβüβ + fα = 0,

r−1Dαβ11∂βuα + ∂αβ(Bαβγδ∂γδw) + r−2D1111w + µẅ − f = 0.
(4.10)

In the above equations the displacements uα(x, ξ, t), w(x, ξ, t),
(x, ξ, t) ∈ Ω× Ξ× I, are the basic unknowns. For tolerance-periodic shells,
coefficients Dαβγδ(x), Bαβγδ(x), µ(x), x ∈ Ω, of lagrangian L and hence also of
equations (4.10) are tolerance-periodic, highly oscillating and non-continuous
functions with respect to x. That is why obtaining the exact analytical
solutions to initial/boundary value problem for Euler-Lagrange equations (4.9)
or for their explicit form (4.10) in the most cases is not possible and also
numerical problems for these equations are ill conditioned. The first aim of this
dissertation is to "replace" these equations by equations with continuous and
slowly-varying coefficients depending also on microstructure size λ. To this end
the non-asymptotic tolerance modelling technique and the consistent
asymptotic modelling procedure will be applied to action functional (4.6)
determined by Lagrange function (4.8). We recall that to make the analysis more
clear, in Chapter 3 we outlined the basic concepts and the main assumptions
of these modelling techniques following books by Woźniak and Wierzbicki [168],
Woźniak, Michalak and Jędrysiak (eds.) [166], Woźniak et al. (eds.) [164],
Tomczyk and Woźniak [152] and Ostrowski [90].
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5. Averaged models

In this chapter three averaged models of dynamic problems for the thin
transversally graded cylindrical shells under consideration will be derived:

• the tolerance model,

• the consistent asymptotic model,

• the combined asymptotic-tolerance model.

5.1. Tolerance model

In this subsection a new mathematical non-asymptotic averaged model for the
analysis of selected dynamic problems for thin shells with a tolerance-periodic
microstructure and a functionally (transversally) graded macrostructure in the
circumferential direction, cf. Figs. 4.1 and 4.2, will be derived applying the tolerance
modelling technique.

We recall that for the shells under consideration, we defined a bounded domain
Ω × Ξ by means of Ω ≡ (0, L1) ⊂ E1, Ξ ≡ (0, L2) ⊂ E1. Points of Ω and Ξ
are denoted respectively by x ≡ x1 and ξ ≡ x2. We also defined the basic cell as
∆ ≡

[
−λ/2, λ/2

]
, where λ ≡ λ1 is a cell length dimension in x-direction and is

called the microstructure length parameter, cf. Chapter 4.
We recall that for the considered shells, coefficients in the fundamental

equations (4.10) are tolerance-periodic, highly oscillating and non-continuous
functions in x ∈ Ω. At the same time, these coefficients are independent of
argument ξ ∈ Ξ.

The tolerance modelling procedure for Euler-Lagrange equations (4.9) is
realized in two steps.

The first step is the tolerance averaging of lagrangian (4.8). To this end let us
introduce two systems of linear-independent highly oscillating fluctuation shape
functions, being tolerance-periodic in x: ha ∈ FS1

δ (Ω,∆), a = 1, 2, . . . , n and
gA ∈ FS2

δ (Ω,∆), A = 1, 2, . . . , N . These functions are assumed to be known in
every problem under consideration. They represent oscillations inside a cell. The
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functions depend on λ as parameter and agree with (3.2) and (3.3) they have to
satisfy conditions

ha ∈ O(λ), λ∂1h
a ∈ O(λ),

gA ∈ O(λ2), λ∂1g
A ∈ O(λ2), λ2∂11g

A ∈ O(λ2),

〈µha〉 =
〈
µgA

〉
= 0 and

〈
µhahb

〉
=
〈
µgAgB

〉
= 0 for a 6= b, A 6= B,

where µ(x) is the shell mass density being a tolerance-periodic function with
respect to x ∈ Ω.

Taking into account that inside the cell the geometrical, elastic and inertial
properties of the shells under consideration are described by symmetric (i.e. even)
functions of argument z ≡ z1 ∈ ∆(x) (the cell has a symmetry axis for z = 0), we
assume that periodic approximation h̃a(x, z) of ha(x) in ∆(x), x ∈ Ω∆ is either
even or odd function with respect to z. This same restriction is imposed on periodic
approximation g̃A(x, z) of fluctuation shape function gA(x). Let ϕ ∈ TPR

δ (Ω,∆),
be an even function with respect to z ∈ ∆(x). Under aforementioned restriction,
averages 〈ϕh∂1h〉, 〈ϕg∂1g〉, 〈ϕ∂1g∂11g〉, which appear in the course of modelling
of tolerance-periodic shells are equal to zero.

Now, we have to introduce the micro-macro decomposition of displacements
uα(x, ξ, t), uα ∈ TP 1

δ (Ω,∆), w(x, ξ, t), w ∈ TP 2
δ (Ω,∆), (x, ξ, t) ∈ Ω×Ξ× I, which

in the problem under consideration is assumed in the form

uα(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t), a = 1, 2, . . . , n,

w(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t), A = 1, 2, . . . , N,
(5.1)

where
u0
α(·, ξ, t), Ua

α(·, ξ, t) ∈ SV 1
δ (Ω,∆), δ ≡ (λ, δ0, δ1),

w0(·, ξ, t),WA(·, ξ, t) ∈ SV 2
δ (Ω,∆), δ ≡ (λ, δ0, δ1, δ2),

(5.2)

for every (ξ, t) ∈ Ξ × I, summation convention over a and A holds. Functions
u0
α, w0 called averaged (macroscopic) variables (or macrodisplacements) and

functions Ua
α, WA termed fluctuation (microscopic) amplitudes are the new

unknowns slowly-varying in x ∈ Ω.
Finite sums ha(x)Ua

α(x, ξ, t), a = 1, 2, . . . , n and gA(x)WA(x, ξ, t),
A = 1, 2, . . . , N , (x, ξ, t) ∈ Ω×Ξ× I, represent oscillations of displacements caused
by a tolerance-periodic microheterogeneous structure of the shell. Integers n, N
determine accuracy of solutions to the initial-boundary value problems under
consideration.

We substitute the right-hand sides of (5.1) into (4.8). The resulting lagrangian
is denoted by Lhg. Averaging lagrangian Lhg over cell ∆ using averaging formula
(3.5) and tolerance averaging approximation (3.6), we arrive at function 〈Lhg〉 being
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the tolerance averaging of lagrangian (4.8) in ∆ under micro-macro decomposition
(5.1). The obtained result has the form〈

Lhg
〉 (
x, ∂βu

0
α, u

0
α, ∂2U

a
α, U

a
α, u̇

0
α, U̇

a
α, ∂αβw

0,

w0, ∂22W
A, ∂2W

A,WA, ẇ0, ẆA
)

=

= −1

2

[〈
Dαβγδ

〉
∂βu

0
α∂δu

0
γ + 2

〈
Dαβγ1∂1h

a
〉
∂βu

0
αU

a
γ+

+ 2
〈
Dαβγ2ha

〉
∂βu

0
α∂2U

a
γ +

〈
Dα11γ∂1h

a∂1h
b
〉
Ua
γU

b
α+

+
〈
Dα22γhahb

〉
∂2U

b
γ∂2U

a
α + 2r−1

(〈
Dαβ11

〉
∂βu

0
αw

0 +

+
〈
Dα111∂1h

a
〉
w0Ua

α +
〈
Dαβ11gA

〉
∂βu

0
αW

A +
〈
Dα111∂1h

agA
〉
Ua
αW

A+

+
〈
Dα211ha

〉
∂2U

a
αw

0 +
〈
Dα211hagA

〉
∂2U

a
αW

A

)
+ r−2

(〈
D1111

〉
w0w0+

+2
〈
D1111gA

〉
w0WA +

〈
D1111gAgB

〉
WAWB

)
+
〈
Bαβγδ

〉
∂αβw

0∂γδw
0+

+ 2

(〈
Bαβ11∂11g

A
〉
∂αβw

0WA +
〈
Bαβ22gA

〉
∂αβw

0∂22W
A+

+
〈
B1122gA∂11g

B
〉
∂22W

BWA

)
+ 4
〈
Bαβ12∂1g

A
〉
∂αβw

0∂2W
A+

+ 4
〈
B1212∂1g

A∂1g
B
〉
∂2W

A∂2W
B +

〈
B1111∂11g

A∂11g
B
〉
WAWB+

+
〈
B2222gAgB

〉
∂22W

A∂22W
B − 〈µ〉 aαβu̇0

αu̇
0
β − 〈µ〉

(
ẇ0
)2

+

−
〈
µhahb

〉
aαβU̇a

αU̇
b
β −

〈
µgAgB

〉
ẆAẆB

]
+ 〈fα〉u0

α+

+ 〈fαha〉Ua
α + 〈f〉w0 +

〈
fgA

〉
WA.

(5.3)

The underlined terms in (5.3) depend on microstructure length parameter λ.
Action functional

Ahg(u
0
α, U

a
α, w

0,WA) =

L1∫
0

L2∫
0

t1∫
t0

〈
Lhg
〉
dtdξdx, (5.4)

with 〈Lhg〉 given by (5.3), is called the tolerance averaging of action
functional A(uα, w) defined by (4.6) under decomposition (5.1).
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The second step in the tolerance modelling of Euler-Lagrange equations (4.9)
is to apply the principle of stationary action to Ahg given above.

Under assumption that ∂〈Lhg〉/∂βu0
α, 〈∂Lhg〉/∂αβw0, ∂〈Lhg〉/∂2U

a
α,

∂〈Lhg〉/∂2W
A, ∂〈Lhg〉/∂22W

A are continuous, from the principle of stationary
action applied to Ahg we obtain the following system of Euler-Lagrange equations
for u0

α, w0, Ua
α, WA as the basic unknowns

∂β
∂〈Lhg〉
∂
(
∂βu0

α

) − ∂〈Lhg〉
∂u0

α

+
∂

∂t

∂〈Lhg〉
∂u̇0

α

= 0,

− ∂αβ
∂〈Lhg〉

∂
(
∂αβw0

) − ∂〈Lhg〉
∂w0

+
∂

∂t

∂〈Lhg〉
∂ẇ0

= 0,

∂

∂t

∂〈Lhg〉
∂U̇a

α

− ∂〈Lhg〉
∂Ua

α

+ ∂2
∂〈Lhg〉
∂ (∂2Ua

α)
= 0,

∂

∂t

∂〈Lhg〉
∂ẆA

− ∂〈Lhg〉
∂WA

+ ∂2
∂〈Lhg〉
∂ (∂2WA)

− ∂22
∂〈Lhg〉

∂ (∂22WA)
= 0.

(5.5)

Combining (5.5) with (5.3) we arrive finally at the explicit form of the
tolerance model equations under micro-macro decomposition (5.1). We
shall write these equations in the form of

• the constitutive equations

Nαβ =
〈
Dαβγδ

〉
∂δu

0
γ + r−1

(〈
Dαβ11

〉
w0 +

〈
Dαβ11gB

〉
WB

)
+

+
〈
Dαβγ1∂1h

b
〉
U b
γ +

〈
Dαβγ2hb

〉
∂2U

b
γ ,

Mαβ =
〈
Bαβγδ

〉
∂γδw

0 +
〈
Bαβ11∂11g

B
〉
WB+

+ 2
〈
Bαβ12∂1g

B
〉
∂2W

B +
〈
Bαβ22gB

〉
∂22W

B,

Haβ =
〈
∂1h

aDβ1γδ
〉
∂δu

0
γ −

〈
haDβ2γδ

〉
∂2δu

0
γ+

+
〈
∂1h

aDβ11γ∂1h
b
〉
U b
γ −

〈
haDβ22γhb

〉
∂22U

b
γ+

+ r−1

(〈
∂1h

aDβ111
〉
w0 −

〈
haDβ211

〉
∂2w

0+

+
〈
∂1h

aDβ111gB
〉
WB −

〈
haDβ211gB

〉
∂2W

B

)
,

(5.6)
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GA = r−1

(〈
gAD11γδ

〉
∂δu

0
γ +

〈
∂1h

bD111γgA
〉
U b
γ+

+
〈
hbD112γgA

〉
∂2U

b
γ

)
+ r−2

〈
gAD1111

〉
w0+

+
〈
∂11g

AB11αβ
〉
∂αβw

0 − 2
〈
∂1g

ABαβ12
〉
∂αβ2w

0+

+
〈
gABαβ22

〉
∂αβ22w

0 +

(〈
∂11g

AB1111∂11g
B
〉

+

+ r−2
〈
gAD1111gB

〉)
WB +

(〈
∂11g

AB1122gB
〉

+

+
〈
gAB1122∂11g

B
〉
− 4
〈
∂1g

AB1212∂1g
B
〉)

∂22W
B+

+
〈
gAB2222gB

〉
∂2222W

B,

(5.6contd)

• and the dynamic equilibrium equations for unknowns u0
α, w0, Ua

α, WA being
slowly-varying functions with respect to x ∈ Ω

∂αN
αβ − 〈µ〉aαβü0

α + 〈fβ〉 = 0,

∂αβM
αβ + r−1N11 + 〈µ〉ẅ0 − 〈f〉 = 0,

〈µhahb〉aαβÜ b
α +Haβ − 〈fβha〉 = 0, a, b = 1, 2, . . . , n,

〈µgAgB〉ẄB +GA − 〈fgA〉 = 0, A,B = 1, 2, . . . , N.

(5.7)

Equations (5.6) and (5.7) together with micro-macro decomposition (5.1)
and physical reliability conditions (5.2) constitute the tolerance model of selected
dynamic problems for the thin transversally graded shells under consideration.

Discussion of results

The characteristic features of the derived tolerance model are:

• In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the tolerance model equations (5.6) and
(5.7) proposed here have coefficients being continuous and slowly-varying
functions in x, x ∈ Ω. Moreover, some of them depend on microstructure
length parameter λ (underlined terms). Hence, the tolerance model makes it
possible to describe the effect of length scale on the global shell behaviour.
Moreover, we can analyse the length-scale effect not only in dynamic but
also in stationary problems for the transversally graded shells.
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• Macrodisplacements u0
α, w0 are governed by the system of three partial

differential equations (5.7)1,2. The number and form of boundary conditions
for averaged variables u0

α, w0 are the same as in the classical shell
theory governed by equations (4.10). Fluctuation amplitudes Ua

α, WA,
a = 1, 2, . . . , n, A = 1, 2, . . . , N are governed by the system of (2n+N) partial
differential equations (5.7)3,4. The boundary conditions for Ua

α, WA should
be defined only on boundaries ξ = 0, ξ = L2.

• Decomposition (5.1) and hence also resulting tolerance model equations
(5.6) and (5.7) are uniquely determined by the postulated a priori
tolerance-periodic fluctuations shape functions, ha ∈ FS1

δ (Ω,∆), ha ∈ O(λ),
a = 1, 2, . . . , n and gA ∈ FS2

δ (Ω,∆), gA ∈ O(λ2), A = 1, 2, . . . , N which
represent oscillations inside a cell. These functions can be obtained as exact
or approximate solutions to certain periodic eigenvalue problems describing
free periodic vibrations of the cell, cf. Tomczyk [133], Jędrysiak [27]. It means
that they represent either the principal modes of free periodic vibrations
of the cell or physically reasonable approximations of these modes. These
functions can also be treated as the shape functions resulting from the
periodic discretization of the cell using for example the finite element method.
The choice of these functions can be also based on the experience or intuition
of the researcher.

• The tolerance models can be formulated on the various levels of accuracy.
This accuracy is determined by numbers n ≥ 1 and N ≥ 1 of terms in
the finite sums ha(x)Ua

α(x, ξ, t) and gA(x)WA(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ × I,
respectively, occurring in micro-macro decomposition (5.1) and representing
micro-fluctuations of displacements caused by a tolerance-periodic structure
of the shells under consideration. By increasing the number of n and N we
can obtain more detailed descriptions of the investigated problems. However,
in the most cases, restriction of considerations to the first terms in series
haUa

α and gAWA, a = 1, 2, . . . , n, A = 1, 2, . . . , N , i.e. for a = n = 1,
A = N = 1, is sufficient from the calculative point of view, cf. Tomczyk [133],
Jędrysiak [27], where some special dynamic problems of thin micro-periodic
cylindrical shells [133] and plates [27] are investigated in the framework of
the tolerance models. Note, that the micro-periodic shells are special cases
of the tolerance-periodic shells considered in this dissertation.

• The resulting equations involve terms with time and spatial derivatives
of the fluctuation amplitudes. Hence, these equations describe certain
time-boundary-layer and space-boundary-layer phenomena strictly related to
the specific form of initial and boundary conditions imposed on unknown
fluctuation amplitudes Ua

α, WA, a = 1, 2, ..., n, A = 1, 2, ..., N .
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• It has to be emphasized that solutions to selected initial/boundary value
problems formulated in the framework of the tolerance model have a physical
sense only if conditions (5.2) hold for the pertinent tolerance parameters δ,
i.e. if unknown macrodisplacements u0

α, w0 and fluctuation amplitudes Ua
α,

WA of the tolerance model equations are slowly-varying functions in the
tolerant periodicity direction. These conditions can be also used for the a
posteriori evaluation of tolerance parameters δ and hence, for the verification
of the physical reliability of the obtained solutions.

• For a homogeneous shell with a constant thickness, Dαβγδ(x),
Bαβγδ(x), µ(x), x ∈ Ω, are constant and because 〈µha〉 = 〈µgA〉 = 0,
a = 1, 2, ..., n, A = 1, 2, ..., N , we obtain 〈ha〉 = 〈gA〉 = 0, and hence
〈∂1h

a〉 = 〈∂1g
A〉 = 〈∂11g

A〉 = 0. In this case equations (5.7)1,2 reduce to the
well known shell equations of motion for averaged displacements u0

α(x, ξ, t),
w0(x, ξ, t) and independently for fluctuation amplitudes Ua

α(x, ξ, t),
WA(x, ξ, t) we arrive at the system of equations, which under condition
〈fβha〉 = 〈fgA〉 = 0 and under homogeneous initial conditions for Ua

α and
WA, has only trivial solution Ua

α = WA = 0. Hence, from decomposition
(5.1) it follows that uα = u0

α, w = w0. It means that equations (5.6), (5.7)
generated by tolerance-averaged Lagrange function (5.3) reduce to the
starting equations (4.10) generated by Lagrange function (4.8).

• The tolerance model equations presented here are more general than those
formulated and discussed in Tomczyk and Szczerba [146], because they are
derived without the extra assumption 1 + λ/r ≈ 1, where λ and r stand
respectively for the microstructure length parameter and the midsurface
curvature radius. It means that in the model equations presented here the
terms of an order O(λ/r) are not neglected.

5.2. Consistent asymptotic model

In this subsection a new mathematical averaged asymptotic model for the analysis
of selected dynamic problems for thin cylindrical shells with a tolerance-periodic
microstructure and a functionally (transversally) graded macrostructure in the
circumferential direction will be formulated applying the consistent asymptotic
procedure proposed in Woźniak et al. (eds.) [164].

On passing from the tolerance averaging to the asymptotic averaging, we retain
only the concepts of fluctuation shape functions and averaging operation. The
notions of slowly-varying and tolerance-periodic functions will not be introduced.

Asymptotic modelling procedure for Euler-Lagrange equations (4.9) is realized
in two steps.
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The first step is the consistent asymptotic averaging of lagrangian L
defined by (4.8). To this end we shall restrict considerations to displacement
fields uα = uα (x, z, ξ, t), w = w (x, z, ξ, t) defined in ∆(x)× Ξ× I, z ∈ ∆(x),
x ∈ Ω∆, (ξ, t) ∈ Ξ× I. Then, we replace uα (x, z, ξ, t), w (x, z, ξ, t) by families
of displacements uεα (x, z, ξ, t) ≡ uα

(
x, z/ε, ξ, t

)
, wε (x, z, ξ, t) ≡ w

(
x, z/ε, ξ, t

)
,

where ε ∈ (0, 1], z ∈ ∆ε(x), ∆ε ≡ (−ελ/2, ελ/2) (scaled cell), ∆ε(x) ≡ x + ∆ε,
x ∈ Ω∆ε (scaled cell with a centre at x ∈ Ω∆ε), Ω∆ε ≡ {x ∈ Ω : ∆ε(x) ⊂ Ω}.

We introduce the consistent asymptotic decomposition of families of
displacements uεα(x, z, ξ, t), wε(x, z, ξ, t), (z, ξ, t) ∈ ∆ε × Ξ× I, x ∈ Ω∆ε

uεα(x, z, ξ, t) ≡ uα(x, z/ε, ξ, t) = u0
α(z, ξ, t) + εh̃aε(x, z)U

a
α(z, ξ, t),

a = 1, 2, . . . , n,

wε(x, z, ξ, t) ≡ w(x, z/ε, ξ, t) = w0(z, ξ, t) + ε2g̃Aε (x, z)WA(z, ξ, t),

A = 1, 2, . . . , N,

(5.8)

where summation convention over a and A holds.
Unknown functions u0

α, Ua
α in (5.8) are assumed to be continuous and bounded

in Ω together with their first derivatives.
Unknown functions w0,WA in (5.8) are assumed to be continuous and bounded

in Ω together with their derivatives up to the second order.
As in the tolerance modelling, functions u0

α, w0 and Ua
α, WA are called

respectively macrodisplacements and fluctuation amplitudes. We recall that they
are not referred to the slowly-varying functions introduced in the tolerance
averaging. Moreover, u0

α, Ua
α, w0, WA are assumed to be independent of ε. This

is the main difference between the asymptotic approach under consideration and
approach which is used in the known homogenization theory, cf. Bensoussan et al.
[9]; Jikov et al. [42].

By h̃aε(x, z) ≡ h̃a(x, z/ε) and g̃Aε (x, z) ≡ g̃A(x, z/ε), z ∈ ∆ε(x), x ∈ Ω∆ε in
(5.8) are denoted periodic approximations of highly oscillating fluctuation
shape functions ha ∈ FS1

δ (Ω,∆) and gA ∈ FS2
δ (Ω,∆) in ∆ε(x). The fluctuation

shape functions are assumed to be known in every problem under
consideration. They have to satisfy conditions: haε ∈ O(ελ), λ∂1h

a
ε ∈ O(ελ),

gAε ∈ O((ελ)2), λ∂1g
A
ε ∈ O((ελ)2), λ2∂11g

A
ε ∈ O((ελ)2), 〈µhaε〉 =

〈
µgAε

〉
= 0 and〈

µhaεh
b
ε

〉
=
〈
µgAε g

B
ε

〉
= 0 for a 6= b, A 6= B.

Taking into account that h̃aε(x, z) ≡ h̃a(x, z/ε), g̃Aε (x, z) ≡ g̃A(x, z/ε)

and setting ∂1h̃
a
ε(x, z) ≡ ε−1 ∂1h̃

a(x, z/ε), ∂1g̃
A
ε (x, z) ≡ ε−1 ∂1g̃

A(x, z/ε),
∂11g̃

A
ε (x, z) ≡ ε−2 ∂11g̃

A(x, z/ε), z ∈ ∆ε(x), x ∈ Ω∆ε , from (5.8) we obtain
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uεα(x, z, ξ, t) = u0
α(z, ξ, t) + εh̃a(x, z/ε)Ua

α(z, ξ, t) = u0
α(z, ξ, t) +O(ε),

∂1uεα(x, z, ξ, t) = ∂1u
0
α(z, ξ, t) + ∂1h̃

a(x, z/ε)Ua
α(z, ξ, t)+

+ εh̃a(x, z/ε)∂1U
a
α(z, ξ, t) = ∂1u

0
α(z, ξ, t)+

+ ∂1h̃
a(x, z/ε)Ua

α(z, ξ, t) +O(ε),

∂2uεα(x, z, ξ, t) = ∂2u
0
α(z, ξ, t) + εh̃a(x, z/ε)∂2U

a
α(z, ξ, t) =

= ∂2u
0
α(z, ξ, t) +O(ε),

u̇εα(x, z, ξ, t) = u̇0
α(z, ξ, t) + εh̃a(x, z/ε)U̇a

α(z, ξ, t) = u̇0
α(z, ξ, t) +O(ε),

wε(x, z, ξ, t) = w0(z, ξ, t) + ε2g̃A(x, z/ε)WA(z, ξ, t) = w0(z, ξ, t) +O(ε2),

∂1wε(x, z, ξ, t) = ∂1w
0(z, ξ, t) + ε∂1g̃

A(x, z/ε)WA(z, ξ, t)+

+ ε2g̃A(x, z/ε)∂1W
A(z, ξ, t) = ∂1w

0(z, ξ, t) +O(ε) +O(ε2),

∂11wε(x, z, ξ, t) = ∂11w
0(z, ξ, t) + ∂11g̃

A(x, z/ε)WA(z, ξ, t)+

+ 2ε∂1g̃
A(x, z/ε)WA(z, ξ, t) + ε2g̃A(x, z/ε)∂11W

A(z, ξ, t) =

= ∂11w
0(z, ξ, t) + ∂11g̃

A(x, z/ε)WA(z, ξ, t) +O(ε) +O(ε2),

∂12wε(x, z, ξ, t) = ∂21wε(x, z, ξ, t) = ∂12w
0(z, ξ, t)+

+ ε∂1g̃
A(x, z/ε)∂2W

A(z, ξ, t) + ε2g̃A(x, z/ε)∂12W
A(z, ξ, t) =

= ∂12w
0(z, ξ, t) +O(ε) +O(ε2),

∂2wε(x, z, ξ, t) = ∂2w
0(z, ξ, t) + ε2g̃A(x, z/ε)∂2W

A(z, ξ, t) =

= ∂2w
0(z, ξ, t) +O(ε2),

∂22wε(x, z, ξ, t) = ∂22w
0(z, ξ, t) + ε2g̃A(x, z/ε)∂22W

A(z, ξ, t) =

= ∂22w
0(z, ξ, t) +O(ε2),

ẇε(x, z, ξ, t) = ẇ0(z, ξ, t) + ε2g̃A(x, z/ε)ẆA(z, ξ, t) = ẇ0(z, ξ, t) +O(ε2),

z ∈ ∆ε(x), x ∈ Ω∆ε , (ξ, t) ∈ Ξ× I.

(5.9)

Due to the fact that lagrangian L defined by (4.8) is highly
oscillating with respect to x, there exists for every x ∈ Ω∆ lagrangian
L̃
(
x, z, ξ, t, ∂βuα, uα, u̇α, ∂αβw,w, ẇ

)
which constitutes a periodic approximation

of lagrangian L in ∆(x), z ∈ ∆(x), x ∈ Ω∆. Let L̃ε be a family of functions given
by

L̃ε = L̃
(
x, z/ε, ξ, t, ∂βuεα, uεα, u̇εα, ∂αβwε, wε, ẇε

)
=

= −1

2

[
D̃αβγδ∂βuεα∂δuεγ + 2r−1D̃αβ11wε∂βuεα + r−2D̃1111(wε)

2+

+B̃αβγδ∂αβwε∂γδwε − µ̃aαβu̇εαu̇εβ − µ̃(ẇε)
2
]

+ fαuεα + fwε,

(5.10)

where D̃αβγδ, B̃αβγδ, µ̃ are periodic approximation of Dαβγδ, Bαβγδ, µ respectively.
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Substituting the right-hand sides of (5.9) into (5.10) and taking into account
that under limit passage ε → 0 for z ∈ ∆ε(x), terms O(ε), O(ε2) (i.e. terms
depending on ε and ε2) can be neglected as well as bearing in mind that if
ε→ 0 then every continuous and bounded function p(z, ξ, t), z ∈ ∆ε(x), x ∈ Ω∆ε ,
(ξ, t) ∈ Ξ× I, tends to function p(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ× I, we arrive at

L̃ε =L̃
(
x, z/ε, ξ, t, ∂1u

0
α(x, ξ, t) + ∂1h̃

a(x, z/ε)Ua
α(x, ξ, t), ∂2u

0
α(x, ξ, t),

u0
α(x, ξ, t), u̇0

α(x, ξ, t), ∂11w
0(x, ξ, t) + ∂11g̃

A(x, z/ε)WA(x, ξ, t),

∂12w
0(x, ξ, t), ∂21w

0(x, ξ, t), ∂22w
0(x, ξ, t), w0(x, ξ, t), ẇ0(x, ξ, t)

)
.

(5.11)

Moreover, if ε→ 0 then, by means of a property of the mean
value, cf. Jikov et al. [42], the obtained result tends weakly to
L0

(
x, ∂βu

0
α, u

0
α, U

a
α, u̇

0
α, ∂αβw

0, w0,WA, ẇ0
)
, where

L0 =

〈
L̃
(
x, z, ξ, t, ∂1u

0
α(x, ξ, t) + ∂1h̃

a(x, z)Ua
α(x, ξ, t), ∂2u

0
α(x, ξ, t), u0

α(x, ξ, t),

u̇0
α(x, ξ, t), ∂11w

0(x, ξ, t) + ∂11g̃
A(x, z)WA(x, ξ, t), ∂12w

0(x, ξ, t),

∂21w
0(x, ξ, t), ∂22w

0(x, ξ, t), w0(x, ξ, t), ẇ0(x, ξ, t)
)〉

.

The explicit form of L0 is given by

L0

(
x, ∂βu

0
α, u

0
α, U

a
α, u̇

0
α, ∂αβw

0, w0,WA, ẇ0
)

=

= −1

2

[〈
Dαβγδ

〉
∂βu

0
α∂δu

0
γ + 2

〈
Dαβγ1∂1h

a
〉
∂βu

0
αU

a
γ+

+
〈
Dα1γ1∂1h

a∂1h
b
〉
Ua
γU

b
α + 2r−1

(〈
Dαβ11

〉
∂βu

0
αw

0+

+
〈
Dα111∂1h

a
〉
w0Ua

α

)
+ r−2

〈
D1111

〉 (
w0
)2

+

+
〈
Bαβγδ

〉
∂αβw

0∂γδw
0 + 2

〈
Bαβ11∂11g

A
〉
∂αβw

0WA+

+
〈
B1111∂11g

A∂11g
B
〉
WAWB − 〈µ〉 aαβu̇0

αu̇
0
β+

−〈µ〉
(
ẇ0
)2
]

+ 〈fα〉u0
α + 〈f〉w0,

(5.12)

where averages 〈·〉 on the right-hand side of (5.12) are continuous and
slowly-varying in x and calculated by means of (3.5).

Function L0, given above, is the averaged form of lagrangian L defined
by (4.8) under consistent asymptotic averaging. We recall that concept of

52



L0 was introduced without any reference to the concept of slowly-varying and
tolerance-periodic functions.

In the framework of consistent asymptotic modelling we introduce the
consistent asymptotic action functional defined by

A0
hg

(
u0
α, U

a
α, w

0,WA
)

=

L1∫
0

L2∫
0

t1∫
t0

L0dtdξdx, (5.13)

where L0 is given by (5.12).
Under assumption that ∂L0/∂βu

0
α, ∂L0/∂αβw

0 are continuous, from the
principle of stationary action applied to (5.13), we obtain the following system
of Euler-Lagrange equations

∂β
∂L0

∂
(
∂βu0

α

) − ∂L0

∂u0
α

+
∂

∂t

∂L0

∂u̇0
α

= 0,

− ∂αβ
∂L0

∂
(
∂αβw0

) − ∂L0

∂w0
+
∂

∂t

∂L0

∂ẇ0
= 0,

∂L0

∂Ua
α

= 0, a = 1, 2, . . . , n,

∂L0

∂WA
= 0, A = 1, 2, . . . , N.

(5.14)

Combining (5.14) with (5.12) we arrive at the explicit form of the consistent
asymptotic model equations for u0

α(x, ξ, t), w0(x, ξ, t), Ua
α(x, ξ, t), WA(x, ξ, t),

x ∈ Ω, (ξ, t) ∈ Ξ× I

∂β

(〈
Dαβγδ

〉
∂δu

0
γ + r−1

〈
Dαβ11

〉
w0

)
+
〈
Dαβγ1∂1h

b
〉
∂βU

b
γ+

− 〈µ〉 aαβü0
β + 〈fα〉 = 0,

∂αβ

(〈
Bαβγδ

〉
∂γδw

0 +
〈
Dαβ11∂11g

B
〉
WB

)
+ r−1

〈
D11γδ

〉
∂δu

0
γ+

+ r−2
〈
D1111

〉
w0 + r−1

〈
D111δ∂1h

b
〉
U b
δ + 〈µ〉 ẅ0 − 〈f〉 = 0,〈

∂1h
aD1βγ1∂1h

b
〉
U b
γ = −

〈
∂1h

aDβ1γδ
〉
∂δu

0
γ − r−1

〈
∂1h

aD1β11
〉
w0,〈

∂11g
AB1111∂11g

B
〉
WA = −

〈
∂11g

BB11γδ
〉
∂γδw

0,

a, b = 1, 2, . . . , n, A,B = 1, 2, . . . , N.

(5.15)

Equations (5.15) consist of three partial differential equations for
macrodisplacements u0

α, w0 coupled with (2n + N) linear algebraic equations for
fluctuation amplitudes Ua

α, WA.
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It can be shown that linear transformations G, E given by
Gab
αγ =

〈
∂1h

aDα1γ1∂1h
b
〉
, EAB =

〈
∂11g

AB1111∂11g
B
〉
, respectively, are invertible.

Hence, solutions U b
γ , WA to equations (5.15)3,4 can be written in the form

U b
γ = −

(
G−1

)bc
γη

[〈
∂1h

cD1ηµϑ
〉
∂ϑu

0
µ + r−1

〈
∂1h

cD1η11
〉
w0

]
,

WA = −
(
E−1

)AB 〈
∂11g

BB11γδ
〉
∂γδw

0,

(5.16)

whereG−1 and E−1 are the inverses of the linear transformationsG, E respectively.
Substituting (5.16) into (5.15)1,2 and setting

Dαβγδ
h ≡

〈
Dαβγδ

〉
−
〈
Dαβη1∂1h

a
〉 (
G−1

)ab
ηζ

〈
∂1h

bD1ζγδ
〉
,

Bαβγδ
g ≡

〈
Bαβγδ

〉
−
〈
Bαβ11∂11g

A
〉 (
E−1

)AB 〈
∂11g

BB11γδ
〉
,

(5.17)

we arrive finally at the following form of Euler-Lagrange equations for u0
α(x, ξ, t),

w0(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ× I,

∂β

(
Dαβγδ
h ∂δu

0
γ + r−1Dαβ11

h w0
)
− 〈µ〉 aαβü0

β + 〈fα〉 = 0,

∂αβ

(
Bαβγδ
g ∂γδw

0
)

+ r−1D11γδ
h ∂δu

0
γ + r−2D1111

h w0 + 〈µ〉 ẅ0 − 〈f〉 = 0.
(5.18)

Since functions uα(x, ξ, t), w(x, ξ, t) have to be uniquely defined in Ω× Ξ× I,
we conclude that uα(x, ξ, t), w(x, ξ, t) have to take the form

uα(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t),

w(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t), x ∈ Ω, (ξ, t) ∈ Ξ× I,
(5.19)

with Ua
α, WA given by (5.16). Contrary to (5.1), the above formula is not a

micro-macro decomposition since in the consistent asymptotic approach it is
not assumed that functions u0

α, w0, Ua
α, WA are slowly-varying. Tensors Dαβγδ

h ,
Bαβγδ
g given by (5.17) are tensors of effective elastic moduli for the shells under

consideration.
Equations (5.18) for macrodisplacements u0

α, w0 together with formula (5.19)
and with expressions (5.16) for fluctuation amplitudes Ua

α, WA represent the
consistent asymptotic model of selected dynamic problems for the thin
transversally graded cylindrical shells under consideration.
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Discussion of results

The characteristic features of the derived consistent asymptotic model are:

• In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the asymptotic model equations (5.18)
proposed here have continuously slowly-varying coefficients.

• Contrary to tolerance model equations (5.6) and (5.7), the asymptotic model
is not able to describe the length-scale effect on the overall shell dynamics
being independent of microstructure cell size λ.

• The number and form of boundary/initial conditions for unknowns u0
α, w0

are the same as in the classical shell theory governed by equations (4.10).

• The extra unknown functions called fluctuation amplitudes Ua
α, WA are

governed by the system of (2n+N) linear algebraic equations (5.15)3,4 and
can be always eliminated from the system of governing equations (5.15) by
means of (5.16). Hence, the unknowns of final asymptotic model equations
(5.18) are only macrodisplacements u0

α, w0.

• The resulting asymptotic equations (5.18) are uniquely determined
by the postulated a priori tolerance-periodic fluctuations shape
functions, ha ∈ FS1

δ (Ω,∆), ha ∈ O(λ), a = 1, 2, . . . , n and gA ∈ FS2
δ (Ω,∆),

gA ∈ O(λ2), A = 1, 2, . . . , N representing oscillations inside a cell. These
functions can be obtained as exact or approximate solutions to certain
periodic eigenvalue problems describing free periodic vibrations of the cell.
These functions can also be derived by means of the periodic discretization
of the cell using for example the finite element method. The choice of these
functions can be also based on the experience or intuition of the researcher.

• If the fluctuation shape functions are not derived as solutions to certain
periodic eigenvalue problems describing free periodic vibrations of the cell
then the effective moduli (5.17) of the shell are obtained without
specification of the periodic cell problems. This situation is different
from that occurring in the known asymptotic homogenisation approach, cf.
e.g. Bensoussan et al. [9], where only solutions to the periodic cell
problems make it possible to define the effective moduli of the
structure under consideration

• For a homogeneous shell with a constant thickness, Dαβγδ(x), Bαβγδ(x), µ(x)
are constant and because 〈µha〉 = 〈µgA〉 = 0, we obtain 〈ha〉 = 〈gA〉 = 0, and
hence 〈∂1h

a〉 = 〈∂1g
A〉 = 〈∂11g

A〉 = 0. In this case we obtain from (5.16) that
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Ua
α = WA = 0 and from (5.17) that Dαβγδ

h ≡ Dαβγδ, Bαβγδ
g ≡ Bαβγδ. Thus,

from decomposition (5.19) it follows that uα = u0
α, w = w0. It means that

equations (5.18) generated by asymptotically averaged Lagrange function
(5.12) reduce to the starting equations (4.10) generated by Lagrange function
(4.8).

• It may also be noticed that from the formal point of view, asymptotic model
equations (5.18) can be obtained directly from tolerance model equations
(5.6) and (5.7) by the formal limit passage λ→ 0, i.e. after neglecting terms
depending on microstructure length parameter λ (underlined terms).

5.3. Combined asymptotic-tolerance model

In this subsection a new mathematical averaged asymptotic-tolerance model
for the analysis of selected dynamic problems for thin cylindrical shells
with a tolerance-periodic microstructure and a functionally (transversally)
graded macrostructure in the circumferential direction will be formulated by
applying the combined modelling proposed in Woźniak et al. (eds.) [164]. This
combined modelling includes both the consistent asymptotic and the tolerance
non-asymptotic modelling techniques which are combined together into a new
procedure.

The combined modelling technique is realized in two steps.

Step 1. Consistent asymptotic modelling

The first step is based on the consistent asymptotic procedure which leads
from starting equations (4.9) with highly oscillating and discontinuous coefficients
to the Euler-Lagrange equations with continuous and slowly-varying coefficients
independent of the microstructure cell size. Hence the model obtained in the
first step is referred to as the macroscopic model. This consistent asymptotic
(macroscopic) model has been formulated in Subsection 5.2 and consists of
equations (5.18) and decomposition (5.19) in which the fluctuation amplitudes
are given by (5.16).

In the subsequent considerations, external forces fa, f will be neglected.
Below, we rewrite equations (5.18) of the consistent asymptotic

(macroscopic) model without the external forces

∂β

(
Dαβγδ
h ∂δu

0
γ + r−1Dαβ11

h w0
)
− 〈µ〉 aαβü0

β = 0

∂αβ

(
Bαβγδ
g ∂γδw

0
)

+ r−1D11γδ
h ∂δu

0
γ + r−2D1111

h w0 + 〈µ〉 ẅ0 = 0.
(5.20)
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In the first step of combined modelling it is assumed that functions u0
α, w0

obtained as solution to a certain boundary-initial value problem for consistent
asymptotic equations (5.20) are known. Hence, there are also known functions

u0α(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t),

w0(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t),

x ∈ Ω, (ξ, t) ∈ Ξ× I, a = 1, 2, . . . , n, A = 1, 2, . . . , N,

(5.21)

where Ua
α, WA are given by means of (5.16).

Step 2. Tolerance modelling

The second step of the combined modelling will be realized by means of the
tolerance (non-asymptotic) modelling procedure.

In the second step we introduce the new tolerance-periodic in x ∈ Ω,
continuous and highly-oscillating fluctuation shape functions : ck ∈ FS1

δ (Ω,∆),
k = 1, 2, . . . ,m, bK ∈ FS2

δ (Ω,∆), K = 1, 2, . . . ,M , such that ck ∈ O(λ),
λ∂1c

k ∈ O(λ), bK ∈ O(λ2), λ∂1b
K ∈ O(λ2), λ2∂11b

K ∈ O(λ2),
〈
µck
〉

=
〈
µbK

〉
= 0

and
〈
µckcl

〉
=
〈
µbKbL

〉
= 0 for k 6= l, K 6= L, where µ(x) is the shell mass

density being a tolerance-periodic function with respect to x. These functions are
assumed to be known in every problem under consideration. Taking into account
that inside the cell the geometrical, elastic and inertial properties of the shells
under consideration are described by symmetric (i.e. even) functions of argument
z ∈ ∆(x) (the cell has a symmetry axis for z = 0), we assume that periodic
approximations c̃k(x, z) and b̃K(x, z) of ck(x) and bK(x) in ∆(x), x ∈ Ω∆, are
either even or odd functions with respect to z.

Let functions Qk
α(x, ξ, t), k = 1, 2, . . . ,m and V K(x, ξ, t), K = 1, 2, . . . ,M ,

(x, ξ, t) ∈ Ω×Ξ× I, be the new unknowns called fluctuation (microscopic)
amplitudes , which are slowly-varying in x, Qk

α ∈ SV 1
δ (Ω,∆), V K ∈ SV 2

δ (Ω,∆).
We shall introduce the extra micro-macro decomposition superimposed

on the known solutions u0α ∈ TP 1
δ (Ω,∆), w0 ∈ TP 2

δ (Ω,∆) obtained within the
macroscopic model

ucα(x, ξ, t) = u0α(x, ξ, t) + ck(x)Qk
α(x, ξ, t),

wb(x, ξ, t) = w0(x, ξ, t) + bK(x)V K(x, ξ, t),

x ∈ Ω, (ξ, t) ∈ Ξ× I, k = 1, 2, . . . ,m, K = 1, 2, . . . ,M,

(5.22)

where summation convention over k and K holds and where ucα ∈ TP 1
δ (Ω,∆),

wb ∈ TP 2
δ (Ω,∆). Formula (5.22) will be also referred to as decomposition

superimposed on the first step of combined modelling.
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Due to the fact that ucα(·, ξ, t) ∈ TP 1
δ (Ω,∆), wb(·, ξ, t) ∈ TP 2

δ (Ω,∆) are
tolerance-periodic functions, there exist periodic approximations of these functions
and of their pertinent derivatives in every ∆(x), x ∈ Ω∆. Bearing in mind
the properties of the slowly-varying functions and fluctuation shape functions
and taking into account that u0α(x, ξ, t) and w0(x, ξ, t) given by (5.21) are
tolerance-periodic functions in x, i.e. u0α ∈ TP 1

δ (Ω,∆), w0 ∈ TP 2
δ (Ω,∆), we arrive

at the following results in ∆(x)× Ξ× I

ũcα(x, z, ξ, t) = ũ0α(x, z, ξ, t) + c̃k(x, z)Qk
α(x, ξ, t),

∂1ũcα(x, z, ξ, t) = ∂1ũ0α(x, z, ξ, t) + ∂1c̃
k(x, z)Qk

α(x, ξ, t),

∂2ũcα(x, z, ξ, t) = ∂2ũ0α(x, z, ξ, t) + c̃k(x, z)∂2Q
k
α(x, ξ, t),

˙̃ucα(x, z, ξ, t) = ˙̃u0α(x, z, ξ, t) + c̃k(x, z)Q̇k
α(x, ξ, t),

(5.23)

and

w̃b(x, z, ξ, t) = w̃0(x, z, ξ, t) + b̃K(x, z)V K(x, ξ, t),

∂1w̃b(x, z, ξ, t) = ∂1w̃0(x, z, ξ, t) + ∂1b̃
K(x, z)V K(x, ξ, t),

∂11w̃b(x, z, ξ, t) = ∂11w̃0(x, z, ξ, t) + ∂11b̃
K(x, z)V K(x, ξ, t),

∂12w̃b(x, z, ξ, t) = ∂21w̃b(x, z, ξ, t) = ∂12w̃0(x, z, ξ, t)+

+ ∂1b̃
K(x, z)∂2V

K(x, ξ, t),

∂2w̃b(x, z, ξ, t) = ∂2w̃0(x, z, ξ, t) + b̃K(x, z)∂2V
K(x, ξ, t),

∂22w̃b(x, z, ξ, t) = ∂22w̃0(x, z, ξ, t) + b̃K(x, z)∂22V
K(x, ξ, t),

˙̃wb(x, z, ξ, t) = ˙̃w0(x, z, ξ, t) + b̃K(x, z)V̇ K(x, ξ, t),

(5.24)

where z ∈ ∆(x), x ∈ Ω∆, (ξ, t) ∈ Ξ× I and ∂1c̃
k(x, z), ∂1b̃

K(x, z), ∂11b̃
K(x, z) stand

for derivatives of c̃k(·) and b̃K(·) with respect to z ∈ ∆(x). Obviously, in terms

∂1ũ0α(x, z, ξ, t) = ∂1

(
u0
α(x, ξ, t) + h̃a(x, z)Ua

α(x, ξ, t)
)
,

∂1w̃0(x, z, ξ, t) = ∂1

(
w0(x, ξ, t) + g̃A(x, z)WA(x, ξ, t)

)
,

∂11w̃0(x, z, ξ, t) = ∂11

(
w0(x, ξ, t) + g̃A(x, z)WA(x, ξ, t)

)
,

we deal with derivatives of u0
α, w0 with respect to x ∈ Ω and with derivatives of

h̃a, g̃A with respect to z ∈ ∆(x).
Setting ucα ≡ uα, wb ≡ w and after neglecting the external forces we obtain

from (4.8) lagrangian Lcb(x, ξ, t, ∂βucα, u̇cα, ∂αβwb, wb, ẇb), x ∈ Ω, (ξ, t) ∈ Ξ × I,
having the following form
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Lcb =− 1

2

(
Dαβγδ∂βucα∂δucγ +

2

r
Dαβ11wb∂βucα +

1

r2
D1111wbwb+

+Bαβγδ∂αβwb∂γδwb − µaαβu̇cαu̇cβ − µ (ẇb)
2

)
.

(5.25)

Action functional A(ucb, wb) determined by Lcb is defined by

A(ucα, wb) =

L1∫
0

L2∫
0

t1∫
t0

Lcb(x, ξ, t, ∂βucα, u̇cα, ∂αβwb, wb, ẇb)dtdξdx. (5.26)

Since lagrangian Lcb is highly oscillating with respect to x then there exists a
periodic approximation L̃cb(x, z, ξ, t, ∂βũcα, ˙̃ucα, ∂αβw̃b, w̃b, ˙̃wb), z ∈ ∆(x), x ∈ Ω∆,
(ξ, t) ∈ Ω × I, of Lcb in every ∆(x). Substituting the right hand sides of
approximations (5.23), (5.24) into this lagrangian as well as substituting into L̃cb
the periodic approximations D̃αβγδ(x, z), B̃αβγδ(x, z), µ̃(x, z) of tolerance-periodic
functions Dαβγδ, Bαβγδ, µ(x) ∈ TP 0

δ (Ω,∆) and averaging L̃cb over cell ∆(x)
using tolerance averaging formula (3.5) and tolerance averaging approximation
(3.6), we arrive at function 〈Lcb〉 being the tolerance averaging of lagrangian
Lcb(x, ξ, t, ∂βucα, u̇cα, ∂αβwb, wb, ẇb) in ∆(x) under micro-macro decomposition
(5.22). Introducing the extra approximation 1 + λ/r ≈ 1, where r is the
midsurface curvature radius, as well as recalling that u0α(·, ξ, t) ∈ TP 1

δ (Ω,∆) and
w0(·, ξ, t) ∈ TP 2

δ (Ω,∆) in (5.22) are known, the obtained result has the form

〈Lcb〉
(
x, ∂2Q

k
α, Q

k
α, Q̇

k
α, ∂22V

K , ∂2V
K , V K , V̇ K

)
=

= −1

2

[〈
Dαβγδ∂βu0α∂δu0γ

〉
+ 2

〈
Dαβγ1∂1c

k∂βu0α

〉
Qk
γ+

+
〈
Dα11γ∂1c

k∂1c
l
〉
Qk
γQ

l
α +

〈
Dα22γckcl

〉
∂2Q

l
γ∂2Q

k
α+

+ 2r−1

(〈
Dαβ11∂βu0αw0

〉
+
〈
Dα111∂1c

kw0

〉
Qk
α

)
+

+ r−2
〈
D1111w0w0

〉
+
〈
Bαβγδ∂αβw0∂γδw0

〉
+

+ 2

(〈
Bαβ11∂11b

K∂αβw0

〉
V K +

〈
Bαβ22bK∂αβw0

〉
∂22V

K+

+
〈
B1122bK∂11b

L
〉
∂22V

LV K

)
+ 4
〈
B1212∂1b

K∂1b
L
〉
∂2V

K∂2V
L+

+
〈
B1111∂11b

K∂11b
L
〉
V KV L +

〈
B2222bKbL

〉
∂22V

K∂22V
L+

−
〈
µaαβu̇0αu̇0β

〉
−
〈
µ (ẇ0)2

〉
−
〈
µckcl

〉
aαβQ̇k

αQ̇
l
β −

〈
µbKbL

〉
V̇ K V̇ L

]
.

(5.27)
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The underlined terms in (5.27) depend on microstructure length parameter λ.
Action functional

Acb

(
Qk
α, V

K
)

=

L1∫
0

L2∫
0

t1∫
t0

〈Lcb〉 dtdξdx, (5.28)

where 〈Lcb〉 is given by (5.27), is called the tolerance averaging of action
functional A(ucα, wb) defined by (5.26) under superimposed decomposition
(5.22).

The principle of stationary action applied to Acb given above leads to the
following system of equations for Ql

α, V L

∂

∂t

∂〈Lcb〉
∂Q̇k

α

− ∂〈Lcb〉
∂Qk

α

+ ∂2
∂〈Lcb〉
∂
(
∂2Qk

α

) = 0,

∂

∂t

∂〈Lcb〉
∂V̇ K

− ∂〈Lcb〉
∂V K

+ ∂2
∂〈Lcb〉
∂ (∂2V K)

− ∂22
∂〈Lcb〉

∂ (∂22V K)
= 0.

(5.29)

Combining (5.29) with (5.27) we obtain finally the explicit form of the
Euler-Lagrange equations〈

Dα22δckcl
〉
∂22Q

l
δ −

〈
Dα11δ∂1c

k∂1c
l
〉
Ql
δ −

〈
µckcl

〉
aαβQ̈l

β =

= r−1
〈
Dα111∂1c

kw0

〉
+
〈
Dαβγ1∂1c

k∂βu0γ

〉
, k, l = 1, 2, . . . ,m,

(5.30)

〈
B2222bKbL

〉
∂2222V

L +

[〈
B1122bK∂11b

L
〉

+
〈
B1122bL∂11b

K
〉

+

− 4
〈
B1212∂1b

K∂1b
L
〉]

∂22V
L +

〈
B1111∂11b

K∂11b
L
〉
V L +

〈
µbKbL

〉
V̈ L =

= −
〈
Bαβ11∂11b

K∂αβw0

〉
, K, L = 1, 2, . . . ,M.

(5.31)
Equations (5.30) and (5.31) together with the micro-macro decomposition

(5.22) constitute the superimposed microscopic model (i.e. microscopic model
imposed on the macroscopic model obtained in the first step of combined
modelling). Coefficients of the derived model equations are continuous and
slowly-varying in x and some of them depend on a cell size λ (underlined terms).
The right-hand sides of (5.30) and (5.31) are known under assumption that u0α,
w0 were determined in the first step of modelling. The basic unknowns Qk

α,
V K of the model equations must be the slowly-varying functions in the tolerant
periodicity direction. The boundary conditions for Qk

α, V K should be defined
only on boundaries ξ = 0, ξ = L2. Let us observe that in the problem under
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consideration we have obtained system of governing equations which consists of
two independent subsystems. The first from them is the system of 2m equations
for fluctuation amplitudes Qk

α, cf. (5.30), whereas the second one is the system of
M equations for fluctuation amplitudes V K , cf. (5.31).

Equations (5.30), (5.31) have to be considered together with decomposition

uα(x, ξ, t) = u0
α(x, ξ, t) + ha(x)Ua

α(x, ξ, t) + ck(x)Qk
α(x, ξ, t),

w(x, ξ, t) = w0(x, ξ, t) + gA(x)WA(x, ξ, t) + bK(x)V K(x, ξ, t),

x ∈ Ω, (ξ, t) ∈ Ξ× I, a = 1, 2, . . . , n, k = 1, 2, . . . ,m,

A = 1, 2, . . . , N, K = 1, 2, . . . ,M,

(5.32)

where functions u0
α, Ua

α, w0, WA have to be obtained in the first step of combined
modelling, i.e. in the framework of the consistent asymptotic modelling.

Combined asymptotic-tolerance model equations

Summarizing results obtained in Step 1 and Step 2 we conclude that
the combined asymptotic-tolerance model of selected dynamic problems for the
tolerance-periodic shells under consideration derived here is represented by

• macroscopic model defined by equations (5.20) for macrodisplacements u0
α,

w0 with expressions (5.16) for fluctuation amplitudes Ua
α,WA, a = 1, 2, . . . , n,

A = 1, 2, . . . , N , obtained by means of the consistent asymptotic
modelling and being independent of the microstructure length; it is assumed
that in the framework of this model the solutions (5.22) to the problem under
consideration are known,

• superimposed microscopic model equations (5.30), (5.31) derived by means
of the tolerance (non-asymptotic) modelling, some coefficients of these
equations (underlined terms) depend on the microstructure length parameter
λ,

• decomposition (5.32).

Coefficients of all equations derived in the framework of combined modelling
are continuous and slowly-varying in x ∈ Ω in contrast to coefficients in starting
equations (4.10), which are discontinuous, highly oscillating and tolerance-periodic.
Moreover, some of them depend on a cell size λ (underlined terms).

Superimposed microscopic model equations independent of solutions
obtained in the framework of macroscopic (asymptotic) model

Now, let us discuss an important modification of equations (5.30), (5.31). Let
us assume n ≡ m, N ≡ M and replace fluctuation shape functions ck(·), bK(·)
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in (5.30), (5.31) by fluctuation shape functions ha(·), a = 1, 2, . . . , n, gA(·),
A = 1, 2, . . . , N , respectively. By means of the consistent asymptotic modelling
we obtain〈

Dα1βγ∂1h
a∂βu0γ

〉
+ r−1

〈
Dα111∂1h

aw0

〉
=
〈
Dα1βγ∂1h

a
〉
∂βu

0
γ+

+
〈
Dα11γ∂1h

a∂1h
b
〉
U b
γ + r−1

〈
Dα111∂1h

a
〉
w0 = 0,〈

Bαβ11∂11g
A∂αβw0

〉
=
〈
Bαβ11∂11g

A
〉
∂αβw

0+

+
〈
B1111∂11g

A∂11g
B
〉
WB = 0,

a, b = 1, 2, . . . , n, A,B = 1, 2, . . . , N.

(5.33)

From comparison of (5.33)1 with (5.30) and (5.33)2 with (5.31) it follows that
the right-hand sides of equations (5.30), (5.31) are equal to zero. Moreover, taking
into account a symmetric form of tensor Dαβγδ we arrive finally to the following
equations for unknown fluctuation amplitudes Qb

1(x, ξ, t), Qb
2(x, ξ, t), V B(x, ξ, t),

(x, ξ, t) ∈ Ω× Ξ× I,〈
D1221hahb

〉
∂22Q

b
1 −

〈
D1111∂1h

a∂1h
b
〉
Qb

1 −
〈
µhahb

〉
Q̈b

1 = 0,

a, b = 1, 2, . . . , n,
(5.34)

〈
D2222hahb

〉
∂22Q

b
2 −

〈
D2112∂1h

a∂1h
b
〉
Qb

2 −
〈
µhahb

〉
Q̈b

2 = 0,

a, b = 1, 2, . . . , n,
(5.35)

〈
B2222gAgB

〉
∂2222V

B +

(〈
B1122gA∂11g

B
〉

+
〈
B1122gB∂11g

A
〉

+

−4
〈
B1212∂1g

A∂1g
B
〉)

∂22V
B +

〈
B1111∂11g

A∂11g
B
〉
V B+

+
〈
µgAgB

〉
V̈ B = 0, A,B = 1, 2, . . . , N.

(5.36)

Equations (5.34)-(5.36) are independent of solutions u0α, w0, obtained in the
framework of the macroscopic model and hence describe selected problems
of the shell micro-dynamics (e.g. the free micro-vibrations, propagation of
waves related to the micro-fluctuation amplitudes) independently of the shell
macro-dynamics. Moreover, in the problem considered here, the micro-dynamic
behaviour of the shells in the axial, circumferential and normal directions can be
analysed independently of each other.
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Discussion of results

The characteristic features of the proposed combined asymptotic-tolerance
model for the analysis of selected dynamic problems for thin cylindrical
shells with a tolerance-periodic microstructure and a transversally
graded macrostructure in the circumferential direction are:

• The combined model equations consist of macroscopic model equations
(5.20) formulated by means of the consistent asymptotic procedure which
are combined with superimposed microscopic model equations (5.30), (5.31)
derived by applying the tolerance modelling technique and under assumption
that in the framework of the macroscopic model the solutions (5.22) to the
problem under consideration are known.

• In contrast to starting equations (4.10) with discontinuous, highly oscillating
and tolerance-periodic coefficients, the combined model equations proposed
here have continuous and slowly-varying coefficients. Moreover,
some coefficients of the superimposed microscopic model equations
depend on a cell size λ. Thus, the combined model can be applied to the
analysis of many phenomena caused by the length-scale effect.

• The resulting combined model equations are uniquely determined by the
highly oscillating tolerance-periodic fluctuation shape functions, which
have to be known in every problem under consideration. In general
case, the fluctuation shape functions of both the macroscopic and the
microscopic models are different. Under assumption that the fluctuation
shape functions of both the models coincide, we have derived superimposed
microscopic model equations (5.34)-(5.36) which are independent of the
solutions obtained in the framework of the macroscopic model. Taking
into account this result we can conclude that an important advantage
of the combined model is that it makes it possible to separate
the macroscopic description of some special problems from their
microscopic description. It means that in the framework of the combined
model we can study micro-dynamics of periodic shells under consideration
independently of their macro-dynamics.

• It can be shown that equations (5.34)-(5.36) also describe certain
near-initial and near-boundary phenomena strictly related to the
specific form of initial conditions and boundary conditions on Ω×∂Ξ, where
Ξ = (0, L2). That is why, equations (5.34)-(5.36) are referred to as the
boundary layer equations, where the term "boundary" is related both to
time and space.
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• Applying the tolerance modelling directly to the decomposition (5.32) we also
obtain the system of equations for u0

α, w0, Ua
α, Qk

α, WA, V K . However, this
system is much more complicated than the system obtained in the framework
of the combined modelling.
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6. Selected problems of dynamics:
Application of the tolerance and
asymptotic models

6.1. Introduction

In all dynamic problems investigated in Section 6 and also in the subsequent
Section 7, the object of considerations is a thin cylindrical shell with L1, L2, r, d as
its circumferential length, axial length, midsurface curvature radius and constant
thickness, respectively. The shell has a functionally graded macrostructure and
a tolerance-periodic microstructure along circumferential direction as well as a
constant structure in the axial direction. On the microscopic level, the shell is
made of two elastic isotropic materials, which are perfectly bonded on interfaces
and tolerance-periodically distributed along x-coordinate. Such a shell is shown in
Fig. 4.1 and reminded in Fig. 6.1.

The basic cell ∆ shown in Fig. 6.2 and cell ∆(x) with the centre at point
x ∈ Ω∆ are defined by (4.1). Below we recall the definitions

∆ ≡
[
−λ/2, λ/2

]
,

∆(x) ≡ x+ ∆ =
[
x− λ/2, x+ λ/2

]
,

x ∈ Ω∆, Ω∆ ≡ {x ∈ Ω : ∆(x) ⊂ Ω},
(6.1)

where λ is a cell length dimension in x ≡ x1-direction, cf. Figs. 6.1 and 6.2. The
microstructure length parameter λ satisfies conditions: λ/max(d) � 1, λ/r � 1
and λ/L1 � 1. Setting z ∈ [−λ/2, λ/2], we assume that the cell ∆ has a symmetry
axis for z = 0. Inside the cell the geometrical, elastic and inertial properties of the
shell are described by symmetric (i.e. even) functions of argument z. At the same
time, these functions are independent of argument ξ ≡ x2.
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Figure 6.1: Fragment of the shell made of tolerance-periodically distributed two component
materials a) the microscopic point of view b) the macroscopic point of view

Properties of the component materials are described by: Young’s moduli
E1, E2, Poisson’s ratios ν1, ν2 and mass densities ρ1, ρ2, cf. Fig. 6.2. It is
assumed that elastic E(x) and inertial ρ(x) properties of the composite shell are
tolerance-periodic functions in x, x ∈ Ω, i.e. E, ρ ∈ TP 0

δ (Ω,∆), but Poisson’s ratio
ν ≡ ν1 = ν2 is constant. Inside the cell, periodic approximations Ẽ(x, z), ρ̃(x, z),
x ∈ ∆(x), x ∈ Ω∆ of functions E(·), ρ(·) take the form

66



Ẽ(·, z), ρ̃(·, z) =

{
E1, ρ1 for z ∈

(
−η̃(x)λ/2, η̃(x)λ/2

)
,

E2, ρ2 for z ∈
[
−λ/2,−η̃(x)λ/2

]
∪
[
η̃(x)λ/2, λ/2

]
,

(6.2)

where η̃(x) ∈ [0, 1] is a periodic approximation of function η(x) ∈ [0, 1] describing
distribution of material properties, cf. Fig. 6.2.

The rigidities Dαβγδ(x), Bαβγδ(x), x ∈ Ω, Dαβγδ, Bαβγδ ∈ TP 0
δ (Ω,∆), of

the shell are described by: Dαβγδ(x) = D(x)Hαβγδ, Bαβγδ(x) = B(x)Hαβγδ,
where D(x) = E(x)d/(1− ν2), B(x) = E(x)d3/(12(1− ν2)) and the nonzero
components of tensor Hαβγδ are: H1111 = H2222 = 1, H1122 = H2211 = ν,
H1212 = H1221 = H2121 = H2112 = (1− ν)/2. Periodic approximations of these
rigidities in the cell take the form: D̃αβγδ(x, z) = Ẽ(x, z) d (1− ν2)−1Hαβγδ,
B̃αβγδ(x, z) = Ẽ(x, z) d3 (12(1− ν2))−1Hαβγδ, z ∈ ∆(x), x ∈ Ω∆, where Ẽ(x, z) is
given by (6.2).

The shell mass density µ(x) per midsurface unit area and its periodic
approximation µ̃(x, z) in the cell are given by µ(x) = ρ(x)d and µ̃(x, z) = ρ̃(x, z)d,
respectively, where ρ̃(x, z) is given by (6.2).

Figure 6.2: Basic cell ∆ ≡ [−λ/2, λ/2] of the tolerance-periodic shell

The considerations will be restricted to the simplest forms of the tolerance,
asymptotic and asymptotic-tolerance models in which a = n = A = N = 1.
It means that we will take into account only one fluctuation shape
function h(x) ≡ h1(x), x ∈ Ω, h ∈ FS1

δ (Ω,∆), which periodic approximation
h̃(x, z) ≡ h̃1(x, z), z ∈ ∆(x), x ∈ Ω∆ is antisymmetric on the cell (i.e. odd with
respect to argument z), and only one fluctuation shape function g(x) ≡ g1(x),
x ∈ Ω, g ∈ FS2

δ (Ω,∆), which periodic approximation g̃(x, z) ≡ g̃1(x, z), z ∈ ∆(x),
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x ∈ Ω∆, is symmetric on the cell (i.e. even with respect to argument z). The
fluctuation shape functions should approximate the expected principal modes of
the shell free vibrations on a cell. On a basis of knowledge of these principal modes
in thin heterogeneous shells and plates, cf. e.g. Tomczyk [133], Jędrysiak [27], we
shall postulate fluctuation shape functions in the form of trigonometric functions.
We shall introduce the following periodic approximations h̃(x, z), g̃(x, z), z ∈ ∆(x),
x ∈ Ω∆, of fluctuation shape functions h(x), g(x), x ∈ Ω,

h̃(x, z) = λ sin
(
2πz/λ

)
, (6.3)

g̃(x, z) = λ2
[
cos
(
2πz/λ

)
+ c(x)

]
, (6.4)

where c(x) is a slowly-varying function in x and is determined by condition
〈µ̃g̃〉 = 0

c(x) = −
(ρ1 − ρ2) sin

(
π(η̃(x)

)
π
(
ρ1η̃(x) + ρ2(1− η̃(x)

) (6.5)

with η̃(x) ∈ [0, 1] being a periodic approximation of function η(x) describing
distribution of material properties.

Function c(x) is treated as constant in calculations of derivatives ∂1g̃, ∂11g̃.
In the calculational examples considered in the application part of this

dissertation, i.e. in Sections 6 and 7, the following periodic approximations η̃(x)
of distribution functions of material properties η(x) will be taken into account

η̃(x) = x/L, (6.6)

η̃(x) =
(
x/L

)2
, (6.7)

η̃(x) =
(
2x/L− 1

)2
, (6.8)

η̃(x) =
(
x/L

)3
, (6.9)

η̃(x) = sin
(
πx/L

)
, (6.10)

η̃(x) = cos
(
πx/(2L)

)
, (6.11)

η̃(x) = sin2
(
πx/L

)
, (6.12)

η̃(x) = cos2
(
πx/L

)
, (6.13)

η̃(x) = 0.6− 0.2(2x/L− 1)2, (6.14)
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η̃(x) = 0.6− 0.2 sin(πx/L), (6.15)

η̃(x) = η = 0.5, (6.16)

where L ≡ L1 and where function η̃(x) = 0.5 describes periodic distribution of
material properties along circumferential direction.

Diagrams of functions (6.6)-(6.16) are shown in Fig. 6.3.

Figure 6.3: Diagrams of functions η(x) ∈ [0, 1] describing distribution of material properties,
which periodic approximations are expressed by (6.6)-(6.16)

In the sequel, under assumption that for the shells under consideration
condition λ/r � 1 holds we shall introduce the extra approximation 1 + λ/r ≈ 1.
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6.2. Free vibrations of the transversally graded shell strip

6.2.1 Formulation of the problem

In this subsection transversal free vibrations of a thin simply supported shell strip
with span L ≡ L1 along the circumferential x ≡ x1-coordinate and with constant
thickness are discussed. The shell strip has a tolerance-periodic microstructure
and a functionally graded macrostructure along its span as well as constant
structure in the axial direction. It assumed that the shell strip is made of two
elastic isotropic materials, which are perfectly bonded on interfaces and densely,
tolerance-periodically distributed along x-coordinate. A fragment of such a shell
strip is shown in Fig. 6.1, where in the problem under consideration length
dimension L2 of the shell along ξ ≡ x2-coordinate is assumed to be infinite.

The basic cell defined by ∆ ≡ [−λ/2, λ/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli E1,
E2, Poisson’s ratio ν ≡ ν1 = ν2 and mass densities ρ1, ρ2. Inside the cell, the
elastic E ∈ TP 0

δ (Ω,∆) and inertial ρ ∈ TP 0
δ (Ω,∆) properties of the shell strip

have periodic approximations Ẽ(x, z), ρ̃(x, z) z ∈ ∆(x), x ∈ Ω∆, defined by (6.2).
The rigidities Dαβγδ(x), Bαβγδ(x) of the shell strip are described in Subsection

6.1.
The considerations will be based on equations (5.6), (5.7) of the tolerance model

and equations (5.18) of the asymptotic model and restricted to the simplest forms
of these models in which a = n = A = N = 1.

In order to investigate free vibrations, we assume that external forces fa, f are
equal to zero.

Moreover, the forces of inertia in directions tangential to the shell midsurface
are neglected.

We also neglect fluctuating parts hUα of displacements uα.
Periodic approximation g̃(x, z), z ∈ ∆(x), x ∈ Ω∆, of fluctuation shape function

g ∈ FS2
δ (Ω,∆) is given by (6.4).

This dynamic problem is treated to be independent of the ξ-coordinate. Hence,
u0

2 = 0 and the remaining unknowns u0
1, w0, W of the tolerance and asymptotic

models proposed in this dissertation are only functions of x-midsurface parameter
and t-coordinate.

The investigations will be carried out for different material properties
distribution functions.

Bearing in mind assumptions given above, the effect of a cell size on free
vibration frequencies of the shell strip under consideration will be analysed by
using both the tolerance model represented by equations of motion (5.7) with
constitutive relations (5.6) and the asymptotic model governed by equations (5.18).
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Moreover, the influence of differences between elastic and inertial properties of the
constituent materials on these frequencies will be studied.

6.2.2 Analysis in the framework of tolerance model

Now, the system of tolerance equations (5.7) reduces to the following system of
three equations for u0

1(x, z), w0(x, t), W (x, t), (x, t) ∈ Ω× I

∂1

(〈
D1111

〉
∂1u

0
1 + r−1

〈
D1111

〉
w0
)

= 0,

∂11

(〈
B1111

〉
∂11w

0 +
〈
B1111∂11g

〉
W
)

+ r−1
〈
D1111

〉
∂1u

0
1+

+ r−2
〈
D1111

〉
w0 + 〈µ〉 ẅ0 = 0,〈

B1111∂11g
〉
∂11w

0 +
〈
B1111 (∂11g)2

〉
W + λ4

〈
µ (g)2

〉
Ẅ = 0,

(6.17)

where g(·) = λ−2g(·). We recall that derivative ∂11g(x) of fluctuation shape
function g(x) is independent of λ as parameter. In equations (6.17) only the
micro-inertia forces λ4

〈
µ (g)2

〉
Ẅ depend on microstructure length parameter λ.

All coefficients of (6.17) are continuous and slowly-varying functions in argument
x.

It is difficult to find analytical solutions to Eqs. (6.17). Thus, to obtain
approximate formulas of free vibration frequencies the known Ritz method can
be applied, cf. Kaliski [46]. Using this method, formulas of the maximal strain
energy Emax and the maximal kinetic energy Kmax are determined.

In the problem under consideration, strain energy function E(x, t),
(x, t) ∈ Ω× I, related to the shell midsurface has the form

E =
1

2

(
D1111 (ε11)2 +B1111 (κ11)2

)
, (6.18)

where ε11 = ∂1u1 + r−1w and κ11 = −∂11w.
The kinetic energy function K(x, t), (x, t) ∈ Ω × I, related to the shell

midsurface is given by

K =
1

2
µ (ẇ)2 . (6.19)

Tolerance modelling applied to (6.18) and (6.19) yields the results

〈E〉 (x) =
1

2

[〈
D1111

〉
(x)
((
∂1u

0
1

)2
+ r−2

(
w0
)2

+ 2r−1∂1u
0
1w

0
)

+

+
〈
B1111

〉
(x)
(
∂11w

0
)2

+ 2
〈
B1111∂11g

〉
(x)∂11w

0W+

+
〈
B1111 (∂11g)2

〉
(x) (W )2

]
, x ∈ Ω∆,

(6.20)
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and

〈K〉 (x) =
1

2

[
〈µ〉 (x)

(
ẇ0
)2

+ λ4
〈
µ (g)2

〉
(x)
(
Ẇ
)2
]
, x ∈ Ω∆. (6.21)

The maximal strain energy and the maximal kinetic energy will be obtained
by integrating results (6.20) and (6.21) over region Ω = (0, L). Unknown functions
in (6.20), (6.21) must satisfy the given boundary conditions for x = 0, x = L.

For the shell strip the solutions to Eqs. (6.17) can be assumed in the form

u0
1(x, t) = A1Ψ(αx) cos(ωt),

w0(x, t) = A2Φ(αx) cos(ωt),

W (x, t) = A3Θ(αx) cos(ωt),

(6.22)

where α is a wave number, ω is a free vibration frequency of transverse free
vibrations. Functions Ψ(·), Φ(·), Θ(·) have to satisfy the given boundary conditions
for x = 0, x = L. They relate to the principal free vibration modes.

Denote the first derivative of Ψ(·) and the second derivative of Φ(·) by

∂1Ψ(αx) ≡ αΨ(αx),

∂11Φ(αx) ≡ α2Φ(αx).
(6.23)

Moreover, let us introduce the following denotations
>
D ≡

∫
Ω

〈
D1111

〉
(x)
[
Ψ(αx)

]2

dx,

>
D
∗
≡ r−2

∫
Ω

〈
D1111

〉
(x)
[
Φ(αx)

]2
dx,

>
D
∗∗
≡ r−1

∫
Ω

〈
D1111

〉
(x)Ψ(αx)Φ(αx)dx,

>
B ≡

∫
Ω

〈
B1111

〉
(x)
[
Φ(αx)

]2

dx,

B ≡
∫
Ω

〈
B1111 (∂11g)2

〉
(x)
[
Θ(αx)

]2
dx,

B
∗ ≡

∫
Ω

〈
B1111∂11g

〉
(x)Φ(αx)Θ(αx)dx,

>µ ≡
∫
Ω

〈µ〉 (x)
[
Φ(αx)

]2
dx,

µ ≡
∫
Ω

〈
µ (g)2

〉
(x)
[
Θ(αx)

]2
dx,

(6.24)
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where averages
〈
D1111

〉
(x),

〈
B1111

〉
(x),

〈
B1111∂11g

〉
(x),

〈
B1111(∂11g)2

〉
(x),

〈µ〉 (x),
〈
µ(g2

〉
(x) are given in Appendix, cf. (A.1), (A.8), (A.11), (A.13), (A.19)

and (A.21). We recall that g = λ−2g.
Taking into account (6.22) and using denotations (6.24), the maximal strain

energy Emax and the maximal kinetic energy Kmax by the tolerance model can be
written as

Emax =
1

2

[
α4>
B (A2)2 + α2

(
2B
∗
A2A3 +

>
D (A1)2

)
+

+ 2α
>
D
∗∗
A1A2 +B (A3)2 +

>
D
∗

(A2)2

]
,

Kmax =
1

2

[
>µ (A2)2 + λ4µ (A3)2

]
ω2.

(6.25)

Substituting the right-hand sides of (6.25) into the conditions of the Ritz
method

∂ (Emax −Kmax)

∂A1

= 0,

∂ (Emax −Kmax)

∂A2

= 0,

∂ (Emax −Kmax)

∂A3

= 0,

(6.26)

we obtain from (6.26) the system of three linear homogeneous algebraic equations
for Ai, i = 1, 2, 3. For a non-trivial solution, the determinant of this system must be
equal to zero. In this manner we arrive at the characteristic equation for frequency
ω of the transverse free vibrations of the shell strip under consideration. Under
extra denotations

d ≡ −
(>
D
∗∗)2 (>

D
)−1

+
>
D
∗
,

ε ≡
(
λ

L

)4

,
(6.27)

from the characteristic equation mentioned above we derive the following formulae
for the fundamental lower free vibration frequency ω− and for the new
additional higher free vibration frequency ω+, caused by a tolerance-periodic
structure of the shell strip
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(ω−)2 =
1

2

(
B

L4µ ε
+
α4>
B + d
>µ

)
+

− B

2L4µ ε

1 +

4π4
(
B
∗
)2

>µB
2 − 2

π4>
B + dL4

>µB

µ ε+

+

π8>
B

2
+ 2π4L4>

Bd+ L8d
2

>µB

µ2ε2


1/2

,

(6.28)

(ω+)2 =
1

2

(
B

L4µ ε
+
α4>
B + d
>µ

)
+

+
B

2L4µ ε

1 +

4π4
(
B
∗
)2

>µB
2 − 2

π4>
B + dL4

>µB

µ ε+

+

π8>
B

2
+ 2π4L4>

Bd+ L8d
2

>µB

µ2ε2


1/2

,

(6.29)

where constant ε involves a microstructure length parameter λ.
It can be observed that ε ≡ (λ/L)4 � 1 can be treated as a small parameter.

Representing the square root in (6.28) in the form of Maclaurin power series with
respect to ε, we obtain the following approximate formula for ω2

−

(ω−)2 =
1
>µ

α4

>
B −

(
B
∗
)2

B

+ d

+O (ε) , (6.30)

where O (ε)→ 0 together with ε→ 0. From result (6.30) it follows that the lower
free vibration frequency ω− is independent of a cell size λ, contrary to the higher
free vibration frequency ω+ which depends on λ.

6.2.3 Analysis in the framework of asymptotic model

In order to evaluate obtained results, let us consider the above problem within the
asymptotic model. Now, asymptotic model equations (5.18) reduce to the following
form
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∂1

(〈
D1111

〉
∂1u

0
1 + r−1

〈
D1111

〉
w0
)

= 0,

∂11

(〈
B1111

〉
∂11w

0 +
〈
B1111∂11g

〉
W
)

+ r−1
〈
D1111

〉
∂1u

0
1+

+ r−2
〈
D1111

〉
w0 + 〈µ〉 ẅ0 = 0,〈

B1111∂11g
〉
∂11w

0 +
〈
B1111 (∂11g)2

〉
W = 0,

(6.31)

Note, that (6.31) can also be directly derived from governing equations
(6.17) by neglecting micro-inertia forces λ4

〈
µ(g)2

〉
Ẅ depending explicitly on

microstructure length parameter λ.
Asymptotic modelling applied to strain energy (6.18) yields the result which

coincides with result (6.20) obtained in the framework of the tolerance modelling.
Asymptotic modelling applied to kinetic energy (6.19) leads to the following

formula for 〈K〉 (x)

〈K〉 (x) =
1

2
〈µ〉 (x)

(
ẇ0
)2
. (6.32)

Assuming solutions to (6.31) in the form of (6.22) and using denotations
(6.24), we derive formulas for the maximal strain energy and the maximal kinetic
energy. The maximal strain energy obtained in the framework of asymptotic model
coincides with corresponding result (6.25)1 derived within the tolerance model. The
maximal kinetic energy has the form

Kmax =
1

2
>µ (A2)2

(
ωAM

)2

. (6.33)

Substituting the right-hand sides of (6.25)1 and (6.33) into conditions (6.26) of
the Ritz method, after some manipulations the formula for frequency ωAM of the
shell’s transverse free vibrations is obtained in the framework of the asymptotic
model under consideration

(
ωAM

)2

=
1
>µ

α4

>
B −

(
B
∗
)2

B

+ d

 , (6.34)

This frequency is independent of a cell size.

6.2.4 Discussion of analytical results

Analysing results obtained in 6.2.2 and 6.2.3 the following important conclusions
can be formulated:
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• In the framework of the tolerance model, not only the fundamental lower ω−,
but also the new additional higher ω+ free vibration frequencies can be derived
and analysed ; cf. (6.28), (6.29). The higher free vibration frequency is caused
by a tolerance-periodic microstructure of the shell strip under consideration
and hence it depends on a microstructure length parameter λ. This frequency
cannot be determined using the asymptotic model.

• Comparing (6.30) and (6.34), we arrive at the following interrelation between
(ω−)2 and (ωAM)2

(ω−)2 =
(
ωAM

)2

+O
(
λ4
)

(6.35)

It means, that differences between the values of lower free vibration frequency
ω− derived from the tolerance model and free vibration frequency ωAM obtained
from the asymptotic one are negligibly small. Thus, in the problem under
consideration, the effect of microstructure length parameter λ on the "classical"
free vibration frequencies can be neglected. It means that the asymptotic model
governed by equations (6.31) is sufficient to determine and investigate free vibration
frequencies of the micro-heterogeneous cylindrical shell strip under consideration.

6.2.5 Numerical calculations

The shell strip simply supported on both edges is taken into account.
Functions Ψ(·), Φ(·), Θ(·) occurring in solutions (6.22) satisfying boundary

conditions for the shell strip simply supported on edges x = 0, x = L, i.e. boundary
conditions, cf. Kaliski [46],

∂1Ψ(0) = Φ(0) = Θ(0) = ∂11Φ(0) = ∂11Θ(0) = 0,

∂1Ψ(L) = Φ(L) = Θ(L) = ∂11Φ(L) = ∂11Θ(L) = 0,

are assumed in the form

Ψ(αx) = cosαx,

Φ(αx) = Θ(αx) = sin(αx),
(6.36)

where the wave number α is equal to π/L.
Calculations are made for approximations η̃(x) of distribution functions of

material properties η(x) given by (6.6)-(6.13) and (6.16).
Diagrams of these functions are shown in Fig. 6.3.
We define the following dimensionless free vibration frequencies

(Ω−)2 ≡
(
1− ν2

)
ρ1L

2

E1

(ω−)2 , (6.37)
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(Ω+)2 ≡
(
1− ν2

)
ρ1L

2

E1

(ω+)2 , (6.38)

(
ΩAM

)2

≡
(
1− ν2

)
ρ1L

2

E1

(
ωAM

)2

, (6.39)

where frequencies ω−, ω+, ωAM are determined by formulae (6.28), (6.29) and
(6.34), respectively.

Some numerical results calculated by formulae (6.37)-(6.39) are shown in Figs.
6.4-6.22.

Calculations are made for Poisson ratio ν = 0.3, for fixed ratio d/λ = 0.1 and
for various ratios ε ≡ λ/L ∈ [0.01, 0.1], E2/E1 ∈ [0.2, 1.0], ρ2/ρ1 ∈ [0.2, 1.0].

All plots are made under assumption L = const. It means that the variations of
ε ≡ λ/L are caused by the changes of a cell size λ. Moreover, for fixed geometrical
ratio d/λ = 0.1, the variations of λ imply the changes of shell thickness d with
respect to L, i.e. d/λ = d/(εL) = 0.1 and hence d/L = 0.1ε.

In Figs. 6.4, 6.5 there are presented diagrams of dimensionless lower free
vibration frequency Ω− (6.37), which is derived from the tolerance model versus
ratio ρ2/ρ1, made for distribution functions of material properties η̃(x) given by
(6.6)-(6.13), (6.16) and for λ/L = 0.1, E2/E1 = {0.2, 0.8}, d/λ = 0.1.

In Figs. 6.6, 6.7 there are presented diagrams of dimensionless free vibration
frequency Ω+ (6.38), which is obtained in the framework of tolerance model versus
ratio ρ2/ρ1, made for distribution functions of material properties η̃(x) given by
(6.6)-(6.13), (6.16) and for λ/L = 0.1, E2/E1 = {0.2, 0.8}, d/λ = 0.1.

In Figs. 6.8, 6.9 there are shown diagrams of dimensionless lower free vibration
frequency Ω− (6.37), versus ratio E2/E1, made for material properties distribution
functions η̃(x) given by (6.6)-(6.13), (6.16) and for λ/L = 0.1, ρ2/ρ1 = {0.2, 0.8},
d/λ = 0.1.

In Figs. 6.10, 6.11 there are shown diagrams of dimensionless higher free
vibration frequency Ω+ (6.38), versus ratio E2/E1, made for material properties
distribution functions η̃(x) given by (6.6)-(6.13), (6.16) and for λ/L = 0.1,
ρ2/ρ1 = {0.2, 0.8}, d/λ = 0.1.
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Figure 6.4: Diagrams of dimensionless lower free vibration frequency Ω− (6.37) of the shell strip
under consideration versus ratio ρ2/ρ1, made for distribution functions η̃(x) given by (6.6)-(6.13),
(6.16) and for E2/E1 = 0.2, λ/L = 0.1

Figure 6.5: Diagrams of dimensionless lower free vibration frequency Ω− (6.37) of of the shell strip
under consideration versus ratio ρ2/ρ1, made for distribution functions η̃(x) given by (6.6)-(6.13),
(6.16) and for E2/E1 = 0.8, λ/L = 0.1
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Figure 6.6: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell strip
under consideration versus ratio ρ2/ρ1, made for distribution functions η̃(x) given by (6.6)-(6.13),
(6.16) and for E2/E1 = 0.2, λ/L = 0.1

Figure 6.7: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell strip
under consideration versus ratio ρ2/ρ1, made for distribution functions η̃(x) given by (6.6)-(6.13),
(6.16) and for E2/E1 = 0.8, λ/L = 0.1
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Figure 6.8: Diagrams of dimensionless lower free vibration frequency Ω− (6.37) of the shell
strip under consideration versus ratio E2/E1, made for distribution functions η̃(x) given by
(6.6)-(6.13), (6.16) and for ρ2/ρ1 = 0.2, λ/L = 0.1

Figure 6.9: Diagrams of dimensionless lower free vibration frequency Ω− (6.37) of the shell
strip under consideration versus ratio E2/E1, made for distribution functions η̃(x) given by
(6.6)-(6.13), (6.16) and for ρ2/ρ1 = 0.8, λ/L = 0.1
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Figure 6.10: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus ratio E2/E1, made for distribution functions η̃(x) given by
(6.6)-(6.13), (6.16) and for ρ2/ρ1 = 0.2, λ/L = 0.1

Figure 6.11: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus ratio E2/E1, made for distribution functions η̃(x) given by
(6.6)-(6.13), (6.16) and for ρ2/ρ1 = 0.8, λ/L = 0.1
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In Figs. 6.12 and 6.13 there are shown diagrams of dimensionless lower free
vibration frequency Ω− (6.37) from the tolerance model and of dimensionless free
vibration frequency ΩAM (6.39) from the asymptotic one, respectively, versus both
ratios E2/E1 and ρ2/ρ1, made for material properties distribution functions η̃(x)
given by (6.6)-(6.13), (6.16) and for λ/L = 0.1, d/λ = 0.1.

From results shown in Figs. 6.12, 6.13, it follows that differences between Ω−
(6.37) and ΩAM (6.39) are negligibly small (maximum relative error is equal to
1.56 · 10−6). These numerical results coincide with analytical result (6.35). In the
subsequent diagrams these frequencies will be taken into account simultaneously.

Plots of frequencies Ω− (6.37), ΩAM (6.39) versus both ratios E2/E1 and
ρ2/ρ1 are presented in Figs. 6.14, 6.15. These plots are made for distribution
functions of material properties η̃(x) given by (6.6)-(6.13), (6.16) and for d/λ = 0.1,
λ/L = {0.01, 0.05}.

In Figs. 6.16-6.18 there are presented diagrams of dimensionless higher free
vibration frequency Ω+ (6.38), versus both ratios E2/E1 and ρ2/ρ1, made for
material properties distribution functions η̃(x) defined by (6.6)-(6.13), (6.16) and
for d/λ = 0.1, λ/L = {0.01, 0.05, 0.1}.

Figure 6.12: Diagrams of dimensionless lower free vibration frequency Ω− (6.37) of the shell strip
under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x) given
by (6.6)-(6.13), (6.16) and for λ/L = 0.1
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Figure 6.13: Diagrams of dimensionless lower free vibration frequency ΩAM (6.39) of the shell
strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x)
given by (6.6)-(6.13), (6.16), and for λ/L = 0.1

Figure 6.14: Diagrams of dimensionless lower free vibration frequencies Ω− (6.37), ΩAM (6.39) of
the shell strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions
η̃(x) given by (6.6)-(6.13), (6.16) and for λ/L = 0.01
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Figure 6.15: Diagrams of dimensionless lower free vibration frequencies Ω− (6.37), ΩAM (6.39) of
the shell strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions
η̃(x) given by (6.6)-(6.13), (6.16) and for λ/L = 0.05

Figure 6.16: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x)
given by (6.6)-(6.13), (6.16) and for λ/L = 0.01
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Figure 6.17: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x)
given by (6.6)-(6.13), (6.16) and for λ/L = 0.05

Figure 6.18: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x)
given by (6.6)-(6.13), (6.16) and for λ/L = 0.1
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In Figs. 6.19 and 6.20 there are shown diagrams of respectively dimensionless
lower free vibration frequencies Ω− (6.37), ΩAM (6.39) and dimensionless higher
free vibration frequency Ω+ (6.38), versus ratio d/λ ∈ [0.01, 0.1], made for
distribution functions of material properties described by (6.6)-(6.13), (6.16) and
for E2/E1 = 0.25, ρ2/ρ1 = 0.75, λ/L = 0.1.

In Figs. 6.21 and 6.22 there are shown diagrams of respectively dimensionless
lower free vibration frequencies Ω− (6.37), ΩAM (6.39) and dimensionless higher
free vibration frequency Ω+ (6.38), versus dimensionless microstructure length
parameter λ/L ∈ [0.01, 0.1], made for distribution functions of material properties
described by (6.6)-(6.13), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75, d/λ = 0.1.

Figure 6.19: Diagrams of dimensionless lower free vibration frequencies Ω− (6.37), ΩAM (6.39)
of the shell strip under consideration versus ratio d/λ, made for distribution functions η̃(x) given
by (6.6)-(6.13), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75, λ/L = 0.1

86



Figure 6.20: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell strip
under consideration versus ratio d/λ, made for distribution functions η̃(x) given by (6.6)-(6.13),
(6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75, λ/L = 0.1

Figure 6.21: Diagrams of dimensionless lower free vibration frequencies Ω− (6.37), ΩAM (6.39)
of the shell strip under consideration versus dimensionless microstructure length parameter
λ/L, made for distribution functions η̃(x) given by (6.6)-(6.13), (6.16) and for E2/E1 = 0.25,
ρ2/ρ1 = 0.75, d/λ = 0.1
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Figure 6.22: Diagrams of dimensionless higher free vibration frequency Ω+ (6.38) of the shell
strip under consideration versus dimensionless microstructure length parameter λ/L, made for
distribution functions η̃(x) given by (6.6)-(6.13), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75,
d/λ = 0.1

6.2.6 Discussion of numerical results

On the basis results shown in Figs. 6.4-6.22 the following conclusions can be
formulated:

• Agree with analytical results (6.35), values of dimensionless lower free
vibration frequencies Ω− and ΩAM calculated in the framework of the
tolerance and the asymptotic models are nearly identical, cf. Figs. 6.12 and
6.13.

• Values of dimensionless free vibration frequencies Ω−, Ω+, ΩAM increase
with the increasing of ratio E2/E1 ∈ [0.2, 1.0], i.e. with the decreasing of
differences between elastic properties of the shell component materials,
cf. Figs. 6.8-6.18. Because the value of Young’s module E1 for the stronger
material is fixed then these differences decrease if values of E2 tend to value
of E1.

• Values of dimensionless free vibration frequencies Ω−, Ω+, ΩAM decrease
with the increasing of ratio ρ2/ρ1 ∈ [0.2, 1.0], i.e. with the decreasing of
differences between inertial properties of the shell component materials,

88



cf. Figs. 6.4-6.7 and Figs. 6.12-6.18. Because the value of mass density ρ1 for
the stronger material is fixed then these differences decrease if values of ρ2

tend to value of ρ1.

• The highest values of frequencies Ω−, Ω+, ΩAM are obtained for
η̃(x) =

(
2x/L− 1

)2 and for pair of ratios (E2/E1 = 1.0, ρ2/ρ1 = 0.2), i.e.
for a shell strip with a very strong inertial heterogeneity and with elastic
homogeneous structure, cf. Figs. 6.12-6.18. The smallest values of Ω−,
Ω+, ΩAM , are obtained for η̃(x) =

(
2x/L− 1

)2 and for pair of ratios
(E2/E1 = 0.2, ρ2/ρ1 = 1.0), i.e. for a shell strip with a very strong elastic
heterogeneity and with inertial homogeneous structure, cf. Figs. 6.12-6.18.

• Values of the dimensionless frequencies Ω−, Ω+, ΩAM increase linearly with
the increasing of ratio d/λ, i.e. with the decreasing of differences between
the shell thickness and the microstructure length parameter λ, cf. Figs. 6.19
and 6.20.

• Values of dimensionless lower free vibration frequencies Ω−, ΩAM increase
linearly with the increasing of ratio λ/L, cf. Fig. 6.21. However, this increase
is not caused by changes of λ with respect to L, but by changes of thickness
d with respect to L. It follows from the fact that ratio d/λ = 0.1 is fixed and
hence variations of values of ε ≡ d/λ imply the changes of a shell thickness
d with respect to L = const., i.e. d/λ = d/(εL) = 0.1→ d/L = 0.1ε.

• Values of the dimensionless higher free vibration frequencies Ω+ decrease
with the increasing of ratio λ/L, i.e. with the decrease of differences between
microstructure length parameter λ and the length dimension L of the
shell midsurface in tolerant periodicity direction, cf. Fig. 6.22. For every
distribution function η̃(x) under consideration, values of Ω+ decrease very
strongly for λ/L ∈ [0.01, 0.03].

• From results shown in Fig. 6.6 it follows that for fixed value of
ratio E2/E1 = 0.2 and for various values of ratio ρ2/ρ1 ∈ [0.2, 1], the
values of dimensionless higher free vibration frequency Ω+ (6.38)
obtained for η̃(x) = cos(πx/(2L)), η̃(x) = sin(πx/L) and η̃(x) = sin2(πx/L)
are always greater than for periodic shell strip, i.e. for distribution
function η̃(x) = η = 0.5. On the other hand, the values of dimensionless
higher free vibration frequency Ω+ (6.38) obtained for η̃(x) = (x/L)2,
η̃(x) = cos2(πx/L), η̃(x) = (x/L)3 η̃(x) = (2x/L− 1)2 are always smaller
than for periodic shell strip.

• From results shown in Fig. 6.10 it follows that for fixed value
of ratio ρ2/ρ1 = 0.2 and for various values of ratio E2/E1 ∈ [0.2, 1],
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the values of dimensionless higher free vibration frequency Ω+ (6.38)
obtained for η̃(x) = cos(πx/(2L)), η̃(x) = sin(πx/L) and η̃(x) = sin2(πx/L)
are always smaller than for periodic shell strip, i.e. for distribution
function η̃(x) = η = 0.5. On the other hand, the values of dimensionless
higher free vibration frequency Ω+ (6.38) obtained for η̃(x) = (x/L)2,
η̃(x) = cos2(πx/L), η̃(x) = (x/L)3 and η̃(x) = (2x/L− 1)2 are always
greater than for periodic shell strip.

6.3. Free vibrations of the functionally graded open shell
of finite length dimensions

6.3.1 Formulation of the problem

In this subsection transversal free vibrations of an open cylindrical shell with L1,
L2, r, d as its circumferential length, axial length, midsurface curvature radius
and constant thickness, respectively, are discussed. On the macroscopic level, the
shell has a functionally graded material structure along circumferential direction.
On the microscopic level, the shell is made of two elastic isotropic materials
perfectly bonded on interfaces and densely, tolerance-periodically distributed along
x-coordinate. The shell’s structure in the axial direction is constant. Such a shell
is shown in Fig. 6.1.

The basic cell defined by ∆ ≡ [−λ/2, λ/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli E1, E2,
Poisson’s ratio ν ≡ ν1 = ν2 and mass densities ρ1, ρ2. Inside the cell, the elastic
E(x), E ∈ TP 0

δ (Ω,∆) and inertial ρ(x), ρ ∈ TP 0
δ (Ω,∆), x ∈ Ω properties of the

shell have periodic approximations Ẽ(x, z), ρ̃(x, z), z ∈ ∆(x), x ∈ Ω∆ defined by
(6.2).

The rigiditiesDαβγδ(x), Bαβγδ(x), x ∈ Ω of the shell are described in Subsection
6.1.

The considerations will be based on equations (5.6), (5.7) of the tolerance model
and equations (5.18) of the asymptotic model and restricted to the simplest forms
of these models in which a = n = A = N = 1.

In order to investigate free vibrations, we assume that external forces fα, f are
equal to zero.

Moreover, the forces of inertia in directions tangential to the shell midsurface
are neglected.

We also neglect fluctuating parts h(x)Uα(x, ξ, t) of displacements uα(x, ξ, t),
(x, ξ, t) ∈ Ω× Ξ× I.
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Periodic approximation g̃(x, z), z ∈ ∆(x), x ∈ Ω∆, of fluctuation shape function
g(·) ∈ FS2

δ (Ω,∆) is given by (6.4).
The investigations will be carried out for a simply supported shell and for

approximations η̃(x) of material properties distribution functions η(x) given by
(6.14) and (6.15), i.e. for η̃(x) = 0.6−0.2(2x/L−1)2 and η̃(x) = 0.6−0.2 sin(πx/L),
respectively. We recall that L ≡ L1.

Bearing in mind assumptions given above, the effect of a cell size on free
vibration frequencies of the shell under consideration will be analysed by using
both the tolerance model represented by equations of motion (5.7) with constitutive
relations (5.6) and the asymptotic model governed by equations (5.18). Moreover,
the influence of differences between elastic and inertial properties of the constituent
materials on these frequencies will be studied.

The very important aim of this subsection is to verify the analytical results
using numerical analysis performed with commercial computer software Ansys
based on the finite element method.

6.3.2 Analysis in the framework of tolerance model

Now, the system of tolerance equations (5.7) reduces to the following system of
four equations for u0

1(x, ξ, t), u0
2(x, ξ, t), w0(x, ξ, t), W (x, ξ, t), (x, ξ, t) ∈ Ω×Ξ× I,

∂α

(〈
Dαβγδ

〉
∂δu

0
γ + r−1

〈
Dαβ11

〉
w0

)
= 0,

∂αβ

(〈
Bαβγδ

〉
∂γδw

0 +
〈
Bαβ11∂11g

〉
W + λ2

〈
Bαβ22g

〉
∂22W

)
+

+ r−1
〈
D11γδ

〉
∂δu

0
γ + r−2

〈
D1111

〉
w0 + 〈µ〉 ẅ0 = 0,〈

B11αβ∂11g
〉
∂αβw

0 + λ2
〈
Bαβ22g

〉
∂αβ22w

0 +
〈
B1111 (∂11g)2

〉
W+

+ 2λ2
〈
gB1122∂11g

〉
∂22W − 4λ2

〈
B1212 (∂1

>g)2
〉
∂22W+

+ λ4
〈
B2222g2

〉
∂2222W + λ4

〈
µg2
〉
Ẅ = 0,

(6.40)

where >g(·) = λ−1g(·), g(·) = λ−2g(·). We recall that derivative ∂11g(x) of
fluctuation shape function g(x) is independent of λ as parameter. In equations
(6.40) some terms depend on microstructure length parameter λ. All coefficients
of (6.40) are continuous and slowly-varying functions in argument x.

It is difficult to find analytical solutions to Eqs. (6.40). Thus, similarly
as Subsection 6.2, in order to obtain approximate formulas of free vibration
frequencies the known Ritz method can be applied, cf. Kaliski [46]. Using this
method, formulas of the maximal strain energy Emax and the maximal kinetic
energy Kmax are determined.

91



In the problem under consideration, strain energy function E = E(x, ξ, t),
(x, ξ, t) ∈ Ω × Ξ × I, related to the shell midsurface has the form given by (4.2).
Below, we recall this function

E =
1

2

(
Dαβγδεαβεγδ +Bαβγδκαβκγδ

)
, (6.41)

where εαβ = 1
2
(∂βuα + ∂αuβ)− bαβw, καβ = −∂αβw, b11 = −r−1,

b22 = b12 = b21 = 0.
The kinetic energy function K = K(x, ξ, t), (x, ξ, t) ∈ Ω×Ξ× I, related to the

shell midsurface is given by

K =
1

2
µ (ẇ)2 . (6.42)

Tolerance modelling applied to (6.41) and (6.42) yields the results

〈E〉 (x) =
1

2

[〈
D1111

〉
(x)

((
∂1u

0
1

)2
+

2

r
∂1u

0
1w

0 +
1

r2

(
w0
)2
)

+

+
〈
D2222

〉
(x)
(
∂2u

0
2

)2
+ 2

〈
D1122

〉
(x)

(
∂1u

0
1∂2u

0
2 +

1

r
w0∂2u

0
2

)
+

+
〈
D1212

〉
(x)
((
∂2u

0
1

)2
+
(
∂1u

0
2

)2
+ 2∂2u

0
1∂1u

0
2

)
+
〈
B1111

〉
(x)
(
∂11w

0
)2

+

+ 2
〈
B1111∂11g

〉
(x)∂11w

0W +
〈
B1111 (∂11g)2

〉
(x)W 2+

+ 2
(〈
B1122

〉
(x)∂11w

0∂22w
0 + λ2

〈
B1122g

〉
(x)∂11w

0∂22W+

+
〈
B1122∂11g

〉
(x)∂22w

0W + λ2
〈
B1122g∂11g

〉
(x)W∂22W

)
+

+
〈
B2222

〉
(x)
(
∂22w

0
)2

+ 2λ2
〈
B2222g

〉
(x)∂22w

0∂22W+

+ λ4
〈
B2222g2

〉
(x) (∂22W )2 + 4

〈
B1212

〉
(x)
(
∂12w

0
)2

+

+ 4λ2
〈
B1212 (∂1

>g)2
〉

(x) (∂2W )2

]
, x ∈ Ω∆,

(6.43)

and

〈K〉 (x) =
1

2

[
〈µ〉 (x)

(
ẇ0
)2

+ λ4
〈
µ (g)2

〉
(x)
(
Ẇ
)2
]
, x ∈ Ω∆. (6.44)

The maximal strain energy and the maximal kinetic energy will be obtained by
integrating results (6.43) and (6.44) over region Ω×Ξ = (0, L1)×(0, L2). Unknown
functions in (6.43), (6.44) must satisfy the given boundary conditions for x = 0,
x = L1 and ξ = 0, ξ = L2.
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Solutions to Eqs. (6.40) satisfying the boundary conditions for a simply
supported shell can be assumed in the form

u0
1(x, ξ, t) =

∞∑
m=1

∞∑
n=1

Amn cos (αmx) sin (βnξ) cos (>ωmnt) ,

u0
2(x, ξ, t) =

∞∑
m=1

∞∑
n=1

Bmn sin (αmx) cos (βnξ) cos (>ωmnt) ,

w0(x, ξ, t) =
∞∑
m=1

∞∑
n=1

Cmn sin (αmx) sin (βnξ) cos (>ωmnt) ,

W (x, ξ, t) =
∞∑
m=1

∞∑
n=1

Dmn sin (αmx) sin (βnξ) cos (>ωmnt) ,

(6.45)

where α = mπ/L1 and β = nπ/L2 are wave numbers, >ωmn is a frequency of
transverse free vibrations.

Let us introduce the following denotations

amn ≡
L1∫

0

L2∫
0

〈
D1111

〉
sin2 (αmx) sin2 (βnξ) dξdx,

bmn ≡
L1∫

0

L2∫
0

〈
D2222

〉
sin2 (αmx) sin2 (βnξ) dξdx,

dmn ≡
L1∫

0

L2∫
0

〈
D1122

〉
sin2 (αmx) sin2 (βnξ) dξdx,

>
dmn ≡

L1∫
0

L2∫
0

〈
D1212

〉
cos2 (αmx) cos2 (βnξ) dξdx,

ẽmn ≡
L1∫

0

L2∫
0

〈
B1111

〉
sin2 (αmx) sin2 (βnξ) dξdx,

emn ≡
L1∫

0

L2∫
0

〈
B1111∂11g

〉
sin2 (αmx) sin2 (βnξ) dξdx,

>emn ≡
L1∫

0

L2∫
0

〈
B1111 (∂11g)2

〉
sin2 (αmx) sin2 (βnξ) dξdx,

(6.46)
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k̃mn ≡
L1∫

0

L2∫
0

〈
B1122

〉
sin2 (αmx) sin2 (βnξ) dξdx,

kmn ≡
L1∫

0

L2∫
0

〈
B1122g

〉
sin2 (αmx) sin2 (βnξ) dξdx,

>
kmn ≡

L1∫
0

L2∫
0

〈
B1122∂11g

〉
sin2 (αmx) sin2 (βnξ) dξdx,

pmn ≡
L1∫

0

L2∫
0

〈
B1122g∂11g

〉
sin2 (αmx) sin2 (βnξ) dξdx,

p̃mn ≡
L1∫

0

L2∫
0

〈
B2222

〉
sin2 (αmx) sin2 (βnξ) dξdx,

pmn ≡
L1∫

0

L2∫
0

〈
B2222g

〉
sin2 (αmx) sin2 (βnξ) dξdx,

>pmn ≡
L1∫

0

L2∫
0

〈
B2222g2

〉
sin2 (αmx) sin2 (βnξ) dξdx,

smn ≡
L1∫

0

L2∫
0

〈
B1212

〉
cos2 (αmx) cos2 (βnξ) dξdx,

s̃mn ≡
L1∫

0

L2∫
0

〈
B1212 (∂1

>g)2
〉

sin2 (αmx) cos2 (βnξ) dξdx,

smn ≡
L1∫

0

L2∫
0

〈µ〉 sin2 (αmx) sin2 (βnξ) dξdx,

>smn ≡
L1∫

0

L2∫
0

〈
µ (g)2

〉
sin2 (αmx) sin2 (βnξ) dξdx,

(6.46contd)

where averages 〈·〉 are given in Appendix, cf. (A.1)-(A.19) and (A.21). We recall
that >g = λ−1g(·), g(·) = λ−2g(·).

Taking into account (6.45) and using denotations (6.46), for arbitrary but fixed
m, n, the maximal strain energy Emax and the maximal kinetic energy Kmax by
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the tolerance model can be written as

Emax =
1

2

[
A2
mn

(
α2
mam + β2

n

>
dmn

)
+B2

mn

(
β2
nbmn + α2

m

>
dmn

)
+

+ C2
mn

(
r−2amn + α4

mẽmn + 2α2
mβ

2
n

(
k̃mn + 2smn

)
+ β4

np̃mn

)
+

+D2
mn

(>emn + 2λ2β2
n (2s̃mn − pmn) + λ4β4

n
>pmn

)
+

+ 2AmnBmnαmβn

(
dmn −

>
dmn

)
− 2AmnCmnr

−1αmamn+

− 2BmnCmnr
−1βndmn+

+ 2CmnDmn

(
λ2
(
α2
mβ

2
n kmn + β4

n pmn

)
−
(
α2
memn + β2

n

>
kmn

))]
,

(6.47)

Kmax =
1

2

[
C2
mnsmn +D2

mnλ
4 >smn

]>ω2
mn. (6.48)

Substituting the right-hand sides of (6.47) and (6.48) into the conditions of the
Ritz method

∂ (Emax −Kmax)

∂Amn
= 0,

∂ (Emax −Kmax)

∂Bmn

= 0,

∂ (Emax −Kmax)

∂Cmn
= 0,

∂ (Emax −Kmax)

∂Dmn

= 0,

(6.49)

we obtain from (6.49), for arbitrary but fixed m, n, the system of four linear
homogeneous algebraic equations for Amn, Bmn, Cmn, Dmn. For a non-trivial
solution, the determinant of this system must be equal to zero. In this manner
we arrive at the characteristic equation for frequency >ωmn of the transverse free
vibrations of the shell under consideration. Using (6.46) we introduce the extra
denotations

Pmn ≡ α2
mamn + β2

n

>
dmn, Pmn ≡ β2

nbmn + α2
m

>
dmn,

>
Pmn ≡ r−2amn + α4

mẽmn + 2α2
mβ

2
n

(
kmn + 2smn

)
+ β4

np̃mn,

>
Rmn ≡ αmβn

(
dmn −

>
dmn

)
, Smn ≡ r−1αmamn, Smn ≡ r−1βndmn,

R̃mn ≡ 2β2
n (2s̃mn − pmn) ,

˜̃
Rmn ≡ β4

n
>pmn,

S̃mn ≡ α2
mβ

2
nkmn + β4

n p,
˜̃
Smn ≡ α2

memn + β2
n

>
kmn,

(6.50)
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and

χmn ≡
>
Pmn −

Smn
>
Rmn

(>
RmnSmn − PmnSmn

)
Pmn

(
(Pmn)2 − (

>
Rmn)2

) − (Smn)2

Pmn
+

+
Smn

(>
RmnSmn − PmnSmn

)
(Pmn)2 − (

>
Rmn)2

.

(6.51)

Under denotations>emn, smn,>smn given by (6.46)7, (6.46)17,18, respectively, and
taking into account expression (6.51) for χmn together with (6.50)1−6 as well as

notations R̃mn,
˜̃
Rmn, S̃mn,

˜̃
Smn given by (6.50)7−10, from the characteristic equation

mentioned above we derive the following formulae for the lower free vibration
frequency >ωmn− and for the new additional higher free vibration frequency >ωmn+,
caused by a tolerance-periodic structure of the shell

(>ωmn−)2 =
1

2

>emn + λ2R̃mn + λ4 ˜̃Rmn

λ4 >smn
+
χmn
smn

+

− 1

2λ4 >smnsmn

((>emn + λ2R̃mn + λ4 ˜̃Rmn

)
smn + λ4 >smnχmn

)2

+

− 4λ4 >smnsmn

((
>emn + λ2R̃mn + λ4 ˜̃Rmn

)
χmn+

−
(
λ2S̃mn −

˜̃
Smn

)2
)1/2

,

(6.52)

(>ωmn+)2 =
1

2

>emn + λ2R̃mn + λ4 ˜̃Rmn

λ4 >smn
+
χmn
smn

+

+
1

2λ4 >smnsmn

((>emn + λ2R̃mn + λ4 ˜̃Rmn

)
smn + λ4 >smnχmn

)2

+

− 4λ4 >smnsmn

((
>emn + λ2R̃mn + λ4 ˜̃Rmn

)
χmn+

−
(
λ2S̃mn −

˜̃
Smn

)2
)1/2

.

(6.53)
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Results (6.52), (6.53) depend explicitly on a microstructure length
parameter λ.

6.3.3 Analysis in the framework of asymptotic model

In order to evaluate the obtained results, let us consider the above problem within
the asymptotic model. Now, asymptotic model equations (5.18) reduce to the
following form

∂α

(〈
Dαβγδ

〉
∂δu

0
γ + r−1

〈
Dαβ11

〉
w0

)
= 0,

∂αβ

(〈
Bαβγδ

〉
∂γδw

0 +
〈
Bαβ11∂11g

〉
W

)
+

+ r−1
〈
D11γδ

〉
∂δu

0
γ + r−2

〈
D1111

〉
w0 + 〈µ〉 ẅ0 = 0,〈

B11αβ∂11g
〉
∂αβw

0 +
〈
B1111 (∂11g)2

〉
W = 0,

(6.54)

Note, that (6.54) can also be derived directly from governing equations (6.40)
by neglecting terms depending explicitly on microstructure length parameter λ.

Asymptotic modelling applied to strain energy (6.41) yields the result having
form of (6.43) without terms depending on microstructure length parameter λ.

Asymptotic modelling applied to kinetic energy (6.42) leads to result having
form of (6.44) without a term depending on a cell size λ.

Assuming solutions to (6.54) in the form of (6.45) and using denotations (6.46),
for arbitrary but fixed m,n, we derive formulas for the maximal strain energy and
the maximal kinetic energy. The maximal strain energy obtained in the framework
of asymptotic model has a form of result (6.47) derived within the tolerance model
but without terms depending on λ. The maximal kinetic energy has the form of
result (6.48) obtained within the tolerance model but without a term including λ
and with free vibration frequency >ωAMmn of the asymptotic model which replaced
free vibration frequency >ωmn of the tolerance one.

Neglecting in (6.47), (6.48) the length-scale terms and replacing in (6.48)
frequency >ωmn by >ωAMmn and then substituting the right-hand sides of (6.47), (6.48)
into conditions (6.49) of the Ritz method, after some manipulations the formula for
frequency >ωAMmn of the shell’s transverse free vibrations is derived in the framework
of the asymptotic model under consideration(

>ωAMmn

)2

=
χmn
smn
− (

˜̃
Smn)2

>emnsmn
, (6.55)

where >emn, smn,
˜̃
Smn, χmn are given by (6.46)7, (6.46)17, (6.50)10, (6.51),

respectively. This frequency is independent of a cell size.
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6.3.4 Numerical calculations

For the simply supported shell under consideration, calculations are made for
approximations η̃(x) of material properties distribution functions η(x) given by
(6.14)-(6.16), i.e. for η̃(x) = 0.6− 0.2(2x/L− 1)2, η̃(x) = 0.6− 0.2 sin(πx/L) and
η̃(x) = η = 0.5.

Diagrams of these functions are shown in Fig. 6.3.
Calculations are made for Poisson’s ratio ν = 0.3, for fixed ratios L2/L1 = 2/π

(short shell), d/λ = 12/(125π), λ/L1 = 1/24 and for various ratios E2/E1 ∈ [0.2, 1],
ρ2/ρ1 ∈ [0.2, 1].

From numerical analysis carried out it follows that for the shell under
consideration, the smallest free vibration frequency related to the lowest free
vibration mode is obtained for m = 5 and n = 1, i.e. for wave numbers α = 5π/L1

and β = π/L2.
In the subsequent considerations, by >ω−, >ω+, >ωAM we shall denote frequencies

related to m = 5 and n = 1.
We define the following dimensionless free vibration frequencies

(>
Ω−

)2

≡
(
1− ν2

)
ρ1L

2

E1

(>ω−)2 , (6.56)

(>
Ω+

)2

≡
(
1− ν2

)
ρ1L

2

E1

(>ω+)2 , (6.57)

(
>
Ω
AM
)2

≡
(
1− ν2

)
ρ1L

2

E1

(
>ωAM

)2

, (6.58)

where >ω−, >ω+, >ωAM are given by (6.52), (6.53), (6.55), respectively. We recall that
L ≡ L1.

Results of calculations are given in Figs. 6.23 and 6.24.
In Fig. 6.23 there are presented diagrams of lower free dimensionless

vibration frequencies
>
Ω− (6.56),

>
Ω
AM

(6.58) derived from the tolerance and
asymptotic models, respectively, versus both ratios E2/E1 and ρ2/ρ1, made for
distribution functions of material properties η̃(x) described by (6.14)-(6.16) and
for λ/L1 = 1/24, d/λ = 12/(125π).

In Fig. 6.24 there are shown diagrams of higher dimensionless free vibration
frequency

>
Ω+ (6.57) derived from the tolerance model versus both ratios E2/E1

and ρ2/ρ1, made for material properties distribution functions η̃(x) described by
(6.14)-(6.16) and for λ/L1 = 1/24, d/λ = 12/(125π).
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Figure 6.23: Diagrams of dimensionless lower free vibration frequencies
>
Ω− (6.56),

>
Ω

AM
(6.58)

of the shell under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions
η̃(x) given by (6.14)-(6.16) and for λ/L1 = 1/24, d/λ = 12/(125π)

Figure 6.24: Diagrams of dimensionless higher free vibration frequency
>
Ω+ (6.57) of the shell

under consideration versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x) given
by (6.14)-(6.16) and for λ/L1 = 1/24, d/λ = 12/(125π)
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6.3.5 Discussion of analytical and numerical results

On the basis of analytical results obtained in 6.3.2 and 6.3.3 the following
important conclusions can be formulated:

• In the framework of the tolerance model, not only the fundamental lower
>ωmn−, but also the new additional higher >ωmn+ free vibration frequencies
can be derived and analysed ; cf. (6.52), (6.53). The higher free vibration
frequency is caused by a tolerance-periodic microstructure of the shell under
consideration and hence it depends on a microstructure length parameter λ.
This frequency cannot be determined using the asymptotic model. Within
asymptotic model only the lower cell-independent free vibration frequency
>ωAMmn (6.55) can be obtained and investigated.

Similar results have been obtained for the transversally graded shell strip
analysed in Subsection 6.2.

On the basis of numerical results shown in Figs. 6.23 and 6.24, the following
conclusions can be formulated:

• Values of dimensionless lower free vibration frequencies
>
Ω− (6.56) and

>
Ω
AM

(6.58) calculated in the framework of the tolerance and the asymptotic
models are nearly identical, cf. Fig. 6.23. It means, that differences between
the values of lower free vibration frequency

>
Ω− derived from the tolerance

model and free vibration frequency
>
Ω
AM

obtained from the asymptotic
one are negligibly small. Thus, in the problem under consideration, the
effect of microstructure length parameter λ on the "classical" free vibration
frequencies can be neglected. It means that the asymptotic model governed
by equations (6.54) is sufficient to determine and investigate free vibration
frequencies of the micro-heterogeneous cylindrical shell under consideration.

• Values of free vibration frequencies Ω−, Ω+, ΩAM increase with the increasing
of ratio E2/E1 ∈ [0.2, 1], i.e. with the decreasing of differences between elastic
properties of the shell component materials, cf. Figs. 6.23 and 6.24. Because
the value of Young’s module E1 for the stronger material is fixed then these
differences decrease if values of E2 tend to value of E1.

• Values of free vibration frequencies Ω−, Ω+, ΩAM decrease with the increasing
of ratio ρ2/ρ1 ∈ [0.2, 1], i.e. with the decreasing of differences between inertial
properties of the component materials, cf. Figs. 6.23 and 6.24. Because
the value of mass density ρ1 for the stronger material is fixed then these
differences decrease if values of ρ2 tend to value of ρ1.
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• The highest values of frequencies
>
Ω−,

>
Ω
AM

, cf. Fig. 6.23, are obtained
for η̃(x) given by (6.15), i.e. η̃(x) = 0.6 − 0.2 sin(πx/L) and for pair of
ratios (E2/E1 = 1.0, ρ2/ρ1 = 0.2), i.e. for a shell with a very strong inertial
heterogeneity and with elastic homogeneous structure. The smallest values of
>
Ω−,

>
Ω
AM

are obtained for η̃(x) given by (6.15), i.e. η̃(x) = 0.6−0.2 sin(πx/L)
and for pair of ratios (E2/E1 = 0.2, ρ2/ρ1 = 1.0), i.e. for a shell with a very
strong elastic heterogeneity and with inertial homogeneous structure.

• The highest value of frequency Ω+, cf. Fig. 6.24, is obtained for η̃(x) given
by (6.15), i.e. η̃(x) = 0.6− 0.2 sin(πx/L) and for pair of ratios (E2/E1 = 1.0,
ρ2/ρ1 = 0.2). The smallest value of Ω+ is obtained for η̃(x) given by (6.15), i.e.
η̃(x) = 0.6− 0.2 sin(πx/L) and for pair of ratios (E2/E1 = 0.2, ρ2/ρ1 = 1.0),
cf. Fig. 6.24.

6.3.6 Verification of selected analytical results using
commercial computer software Ansys

In this subsection the computational results obtained in the framework of the
tolerance and asymptotic models will be compared with corresponding results
obtained from the commercial software Ansys® Academic Research Mechanical
2020 R1.

Object under consideration is a simply supported thin cylindrical open shell
with r = 1 m, L1 = πr/2, L2 = r, d = 0.002 m, λ = L1/24. We recall that
the shell is made of 2 kinds of materials tolerance-periodically distributed in
circurumferential direction as shown in Fig. 6.1. The basic cell is shown in Fig.
6.2. It is assumed that properties of one of these materials are fixed and equal
to structural steel properties: E1 = 2 · 1011 Pa, ρ1 = 7850 kg/m3 ν = 0.3. The
properties of the second material are described by E2 = E1κ, ρ2 = ρ1φ, ν = 0.3
where κ ∈ [0.2, 1], φ ∈ [0.2, 1]. Calculations are made for two distribution functions
of material properties: η̃(x) = 0.6−0.2(2x/L−1)2 and η̃ (x) = 0.6−0.2 sin(πx/L).
We recall that L ≡ L1.

In Fig. 6.25 there are presented diagrams of lower free vibration frequency >ω−
(6.56) derived from the tolerance model versus both ratios E2/E1 and ρ2/ρ1, made
for distribution functions of material properties η̃(x) described by (6.14), (6.15)
and for λ/L1 = 1/24, d/λ = 12/(125π). Note, that diagrams shown in Fig. 6.25
are the same as shown in Fig. 6.23, but made for dimension values of free vibration
frequency >ω−. Equation (6.59) given below shows how these values were calculated
(units conversion included)
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>ω− =
1

2π

√
E1

(1− ν2) ρ1L2
1

(>
Ω−

)2

=

=
1

2π

√
2 · 1011Pa(

1− (0.3)2
)

7850 kg/m3 (1.57 m)2

(>
Ω−

)2

=

= 536.12
1

s

>
Ω−

(6.59)

Figure 6.25: Diagrams of lower free vibration frequency >ω− (6.59) of the shell under consideration
versus ratios E2/E1 and ρ2/ρ1, made for distribution functions η̃(x) given by (6.14), (6.15) and
for λ/L1 = 1/24, d/λ = 12/(125π)

Using Ansys, the eight node quadrilateral shaped shell element (SHELL281)
was applied for meshing the shell. Boundary conditions were modelled by fixed
displacements in the respective directions. Mutual contact regions were used to
model perfect boundary on interfaces.

For every considered pair E2/E1, ρ2/ρ1 and for both distribution functions
the first (smallest) fundamental free vibration frequency is obtained for wave
numbers α = 5π/L1 and β = π/L2 (i.e. for m = 5 and n = 1). The first (i.e.
lowest) free vibration modes obtained for E2/E1 = 0.5 and ρ2/ρ1 = 0.5, for
η̃(x) = 0.6− 0.2(2x/L− 1)2 and η̃ (x) = 0.6− 0.2 sin(πx/L) are presented in Figs.
6.27 and 6.28, respectively.
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Figure 6.26: Shells under consideration shown in commercial software Ansys; a) tolerance-periodic
shell with distribution of material properties described by function η̃(x) = 0.6− 0.2(2x/L− 1)2

b) tolerance-periodic shell with distribution of material properties described by function
η̃ (x) = 0.6− 0.2 sin(πx/L)

Figure 6.27: The first free vibration mode related to distribution function
η̃(x) = 0.6− 0.2(2x/L− 1)2

Figure 6.28: The first free vibration mode related to distribution function
η̃ (x) = 0.6− 0.2 sin(πx/L)

Results shown in Figs. 6.27 and 6.28 proof that the lowest vibration mode
related to distributions functions given by (6.14) and (6.15) are nearly identical.

The first step was a convergence analysis for the results obtained from Ansys,
i.e. to check weather the increase in the number of elements has a significant impact
on the values of vibration frequencies. Calculations were made for E2/E1 = 0.5,
ρ2/ρ1 = 0.5, for both distrubution functions under consideration and for different
number of finite elements. The results are shown in Figs. 6.29 and 6.30. In

103



the next steps calculations are made for 8019 elements for distribution function
η̃(x) = 0.6− 0.2(2x/L− 1)2 and for 8020 elements for distribution function
η̃ (x) = 0.6− 0.2 sin(πx/L).

Figure 6.29: Diagrams of the first four free vibration frequencies of the shell under consideration
with distribution of material properties described by function η̃(x) = 0.6−0.2(2x/L−1)2 obtained
from commercial software Ansys versus number of elements used for calculations

Figure 6.30: Diagrams of the first four free vibration frequencies of the shell under consideration
with distribution of material properties described by function η̃ (x) = 0.6−0.2 sin(πx/L) obtained
from commercial software Ansys versus number of elements used for calculations
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It is worth noting that for the shell under consideration the difference between
first and second free vibration frequencies is relatively small (approximately 1.5%),
so from an engineering point of view it is reasonable to compare the results for a
larger number of succesive free vibration frequencies. In the next steps the first 25
smallest free vibration frequencies are considered. We define the following mean
absolute relative error (MARE)

MARE =
1

25

25∑
n=1

∣∣∣∣∣>ωFEM
i −>ωTMi

>ωFEM
i

∣∣∣∣∣ (6.60)

where >ωFEM
i is i-th free vibration frequency obtained from Finite Element Method,

>ωTMi is i-th free vibration frequency obtained from Tolerance Modelling.
Below we present computational results for distribution function

η̃(x) = 0.6− 0.2(2x/L1 − 1)2.

Figure 6.31: Comparision of results obtained from the tolerance modelling and from the finite
element method (Ansys), for distribution function η̃(x) = 0.6− 0.2(2x/L− 1)2 and fixed values
ρ2/ρ1 = {0.25, 0.5, 0.75, 1.0}
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Figure 6.32: Comparision of results obtained from the tolerance modelling and from the finite
element method (Ansys), for distribution function η̃(x) = 0.6− 0.2(2x/L− 1)2 and fixed values
E2/E1 = {0.25, 0.5, 0.75, 1.0}

E2/E1

0.25 0.50 0.75 1.00

ρ2/ρ1

0.25 5.19% 1.8% 1.06% 1.04%
0.50 5.46% 1.80% 0.97% 0.86%
0.75 5.71% 1.89% 0.97% 0.79%
1.00 5.94% 1.99% 1.01% 0.77%

Table 6.1: Relative error for first free frequency for the tolerance-periodic shell with distribution
of material properties described by function η̃(x) = 0.6− 0.2(2x/L− 1)2, for different values of
pairs E2/E1 and ρ2/ρ1

106



E2/E1

0.25 0.50 0.75 1.00

ρ2/ρ1

0.25 6.39% 1.78% 0.70% 0.62%
0.50 7.28% 1.9% 0.60% 0.46%
0.75 7.58% 2.07% 0.61% 0.41%
1.00 7.81% 2.21% 0.64% 0.41%

Table 6.2: Mean absolute relative error (6.60) for the tolerance-periodic shell with distribution
of material properties described by function η̃(x) = 0.6− 0.2(2x/L− 1)2, for different values of
pairs E2/E1 and ρ2/ρ1

Below we present computational results for distribution function
η̃ (x) = 0.6− 0.2 sin(πx/L).

Figure 6.33: Comparision of results obtained from the tolerance modelling and from the finite
element method (Ansys), for distribution function η̃ (x) = 0.6 − 0.2 sin(πx/L) and fixed values
ρ2/ρ1 = {0.25, 0.5, 0.75, 1.0}
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Figure 6.34: Comparision of results obtained from the tolerance modelling and from the finite
element method (Ansys), for distribution function η̃ (x) = 0.6 − 0.2 sin(πx/L) and fixed values
E2/E1 = {0.25, 0.5, 0.75, 1.0}

E2/E1

0.25 0.50 0.75 1.00

ρ2/ρ1

0.25 4.37% 1.64% 1.12% 1.15%
0.50 4.65% 1.64% 0.98% 0.90%
0.75 4.92% 1.74% 0.96% 0.80%
1.00 5.15% 1.87% 1.00% 0.78%

Table 6.3: Relative error for first free frequency for the tolerance-periodic shell with distribution
of material properties described by function η̃ (x) = 0.6 − 0.2 sin(πx/L), for different values of
pairs E2/E1 and ρ2/ρ1
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E2/E1

0.25 0.50 0.75 1.00

ρ2/ρ1

0.25 5.98% 1.57% 0.68% 0.62%
0.50 6.43% 1.76% 0.60% 0.47%
0.75 6.74% 1.93% 0.60% 0.41%
1.00 6.96% 2.06% 0.62% 0.41%

Table 6.4: Mean absolute relative error (6.60) for the tolerance-periodic shell with distribution
of material properties described by function η̃ (x) = 0.6 − 0.2 sin(πx/L), for different values of
pairs E2/E1 and ρ2/ρ1

Discussion of results

On the basis of results shown in this subsection the following conclusions can be
formulated:

• The high convergence of results (cf. Figs. 6.30-6.29) makes it possible to use
results obtained from Ansys as a reference to those obtained in the framework
of the tolerance modelling procedure.

• For both distribution functions under consideration the first fundamental
frequency was >ω51. The difference between first and second free vibration
frequencies is relatively small, so it is important not to limit calculations to
only first fundamental vibration frequency.

• The values of ratio E1/E2 have a greater impact on values of both the relative
error for first free frequency and the mean absolute relative error than the
values of ratio ρ2/ρ1.

• Relative error for the first free frequency for the tolerance-periodic
shell with distribution of material properties given by function
η̃(x) = 0.6− 0.2(2x/L− 1)2 varies from 0.77% (for E2/E1 = 1.0 and
ρ2/ρ1 = 1.0) to 5.94% (for E2/E1 = 0.25 and ρ2/ρ1 = 1.0). Mean absolute
relative error for the tolerance-periodic shell with distribution of material
properties described by function η̃ (x) = 0.6− 0.2 sin(πx/L) varies from
0.77% (for E2/E1 = 1.0 and ρ2/ρ1 = 1.0) to 5.15% (for E2/E1 = 0.25
and ρ2/ρ1 = 1.0).

• For shells with small differences in material properties E1/E2 ∈ [0.5, 1] and
ρ2/ρ1 ∈ [0.5, 1], maximum relative error for the first free frequency for
distribution function η̃(x) = 0.6 − 0.2(2x/L − 1)2 is equal to 1.99% and
for distribution function η̃ (x) = 0.6− 0.2 sin(πx/L) is equal to 1.87%.
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• Mean absolute relative error for the tolerance-periodic shell with distribution
of material properties described by function η̃(x) = 0.6− 0.2(2x/L− 1)2

varies from 0.41% (for E2/E1 = 1.0 and ρ2/ρ1 = 1.0) to 7.81% (for
E2/E1 = 0.25 and ρ2/ρ1 = 1.0). Mean absolute relative error for
tolerance-periodic shell with distribution of material properties described
by function η̃ (x) = 0.6− 0.2 sin(πx/L) varies from 0.41% (for E2/E1 = 1.0
and ρ2/ρ1 = 1.0) to 6.96% (for E2/E1 = 0.25 and ρ2/ρ1 = 1.0).

• For shells with small differences in material properties E1/E2 ∈ [0.5, 1]
and ρ2/ρ1 ∈ [0.5, 1], maximum mean absolute relative error for distribution
function η̃(x) = 0.6 − 0.2(2x/L − 1)2 is equal to 2.21% and for distribution
function η̃ (x) = 0.6− 0.2 sin(πx/L) is equal to 2.06%.
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7. Selected dynamic problems of
micro-dynamics: Application of the
combined asymptotic-tolerance model

7.1. Introduction

In all special micro-dynamic problems investigated in this chapter, the object
of considerations is an open thin cylindrical shell with L1, L2, r, d as its
circumferential length, axial length, midsurface curvature radius and constant
thickness, respectively. The shell has a functionally graded macrostructure and
a tolerance-periodic microstructure along circumferential direction as well as a
constant structure in the axial direction. On the microscopic level, the shell is
made of two elastic isotropic materials, which are perfectly bonded on interfaces
and tolerance-periodically distributed along x-coordinate. Such a shell is shown in
Fig. 6.1.

The basic cell defined by ∆ ≡ [−λ/2, λ/2], cf. definition (6.1), is shown in Fig.
6.2.

Properties of the component materials are described by Young’s moduli E1, E2,
Poisson’s ratio ν ≡ ν1 = ν2 and mass densities ρ1, ρ2. Inside the cell, the elastic
E ∈ TP 0

δ (Ω,∆) and inertial ρ ∈ TP 0
δ (Ω,∆) properties of the shell have periodic

approximations Ẽ(x, z), ρ̃(x, z), z ∈ ∆(x), x ∈ Ω∆, defined by (6.2).
The rigidities Dαβγδ(x), Bαβγδ(x), x ∈ Ω, of the shell are described in

Subsection 6.1.
The considerations will be based on superimposed microscopic model equations

(5.34)-(5.36) derived in the second step of the combined asymptotic-tolerance
modelling. Equations (5.34)-(5.36) are independent of solutions obtained in the
framework of asymptotic (macroscopic model) derived in the first step of combined
modelling. Hence, they make it possible to investigate the shell micro-dynamics
separately from the shell macro-dynamics. This is the greatest advantage of the
combined asymptotic-tolerance model proposed in this dissertation.

The considerations will be restricted to the simplest form of the model in which
a = n = A = N = 1.
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Periodic approximations h̃(x, z), g̃(x, z), z ∈ ∆(x), x ∈ Ω∆, of fluctuation shape
functions h ∈ FS1

δ (Ω,∆), g ∈ FS2
δ (Ω,∆) are given by (6.3) and (6.4), respectively.

Some from approximations η̃(x) of material properties distribution functions
η(x) expressed by (6.6)-(6.16) will be used.

In this subsection, the influence of a cell size on the free micro-vibration
frequencies and on the character of displacement micro-fluctuations caused by a
tolerance-periodic structure of the shell will be investigated. Moreover, the effect of
a microstructure size on the displacement wave propagating in the axial direction,
i.e. in the direction parallel to the interfaces between component materials, will be
studied. It will be also shown that the superimposed microscopic model equations
(5.34)-(5.36) describe certain space-boundary layer phenomena strictly related to
the specific form of boundary conditions imposed on micro-fluctuation amplitudes
being unknowns in these equations. The length-scale effect will be also analysed
in a certain special initial value problem.

It has to be emphasized that the special problems mentioned above cannot be
analysed in the framework of asymptotic models.

7.2. Free micro-vibrations

In this subsection we derive micro-vibration frequencies of the tolerance-periodic
shell under consideration independently of the macro-vibration frequencies. The
shell is simply supported on all four edges.

The subsequent analysis will be based on Eqs. (5.34)-(5.36). Since coefficients of
these equations are functions of x, then the approximate formulae of free vibration
frequencies will be derived applying the known Galerkin method, cf. [46], in the
range 0 ≤ x ≤ L1.

7.2.1 Analytical results

Free micro-vibrations in circumferential direction

The shell free micro-vibrations along circumferential direction are described by Eq.
(5.34). For a = n = 1, this equation has the following form〈

D1212(h)2
〉
(x)∂22Q1 −

〈
D1111 (∂1h)2

〉
(x)Q1 −

〈
µ (h)2

〉
(x)Q̈1 = 0,

x ∈ Ω∆,
(7.1)

where averages 〈D1111(∂1h)2〉, 〈D1212(h)2〉, 〈µ(h)2〉 are given in Appendix, cf.
expressions (A.4), (A.5) and (A.20). The underlined terms in (7.1) depend on
a cell size λ.
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Solution to Eq. (7.1) satisfying the boundary conditions for a shell simply
supported on edges ξ = 0, ξ = L2 can be assumed in the form

Q1 (x, ξ, t) = Q∗1 (x) sin
(
πξ/L2

)
cos (ωt) , (7.2)

where Q∗1(x) is a slowly-varying function in x satisfying boundary conditions
on edges x = 0, x = L1 and ω is a frequency of free micro-vibrations along
circumferential direction. Substituting (7.2) into (7.1), for sin(πξ/L2) 6= 0, we
arrive at equation for Q∗1(x)

Q∗1 (x)

[
−
(
π/L2

)2 〈
D1212(h)2

〉
(x)−

〈
D1111 (∂1h)2

〉
(x)+

+ω2
〈
µ (h)2

〉
(x)

]
= 0,

(7.3)

In order to obtain approximate formula of free vibration frequency ω, the
known Galerkin method, cf. [46], can be applied to Eq. (7.3). Solution to Eq.
(7.3) satisfying the boundary conditions for a shell simply supported on edges
x = 0, x = L1 is assumed as Q∗1(x) = A cos(πx/L1). We substitute this solution
into (7.3). For A 6= 0, the orthogonality condition of the resulting left-hand side of
Eq. (7.3) and function cos(πx/L1) has the following form

L1∫
0

[
−
(
π/L2

)2 〈
D1212(h)2

〉
(x)−

〈
D1111 (∂1h)2

〉
(x)+

+ω2
〈
µ (h)2

〉
(x)

]
cos2

(
πx/L1

)
dx = 0,

Setting h = λ−1h, from the above orthogonality condition, we obtain the
following formula for ω

ω2 =

λ2

L1∫
0

〈
µ(h)2

〉
(x) cos2

(
πx/L1

)
dx


−1

L1∫
0

[
−
(
π/L2

)2
λ2
〈
D1212(h)2

〉
(x)+

−
〈
D1111 (∂1h)2

〉
(x)

]
cos2

(
πx/L1

)
dx.

(7.4)

Free micro-vibrations in axial direction

The shell free micro-vibrations in axial direction are described by Eq. (5.35). For
a = n = 1, this equation has the following form
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〈
D2222(h)2

〉
(x)∂22Q2 −

〈
D1212 (∂1h)2

〉
(x)Q2 −

〈
µ (h)2

〉
(x)Q̈2 = 0,

x ∈ Ω∆,
(7.5)

where averages 〈D1212(∂1h)2〉, 〈D2222(h)2〉, 〈µ(h)2〉 are given in Appendix, cf.
expressions (A.6), (A.7) and (A.20). The underlined terms in (7.5) depend on
a microstructure length parameter λ.

Solution to Eq. (7.5) satisfying the boundary conditions for a shell simply
supported on edges ξ = 0, ξ = L2 can be assumed in the form

Q2 (x, ξ, t) = Q∗2 (x) cos
(
πξ/L2

)
cos (ω̆t) , (7.6)

where Q∗2(x) is a slowly-varying function in x satisfying boundary conditions on
edges x = 0, x = L1 and ω̆ is a frequency of free micro-vibrations along axial
direction. Substituting (7.6) into (7.5), for cos(πξ/L2) 6= 0, we arrive at equation
for Q∗2(x)

Q∗2 (x)

[
−
(
π/L2

)2 〈
D2222(h)2

〉
(x)−

〈
D1212 (∂1h)2

〉
(x)+

+ω̆2
〈
µ (h)2

〉
(x)

]
= 0,

(7.7)

Solution to Eq. (7.7) satisfying the boundary conditions for a shell simply
supported on edges x = 0, x = L1 is assumed as Q∗2 = B sin(πx/L1). We substitute
this solution into (7.7). By means of Galerkin method, for B 6= 0, the following
orthogonality condition of the resulting left-hand side of Eq. (7.7) and function
sin(πx/L1) is obtained

L1∫
0

[
−
(
π/L2

)2 〈
D2222(h)2

〉
(x)−

〈
D1212 (∂1h)2

〉
(x)+

+ω̆2
〈
µ (h)2

〉
(x)

]
sin2

(
πx/L1

)
dx = 0,

Setting h = λ−1h, from the above orthogonality condition, we derive the
following formula for ω̆

ω̆2 =

L1∫
0

[
−
(
π/L2

)2
λ2
〈
D2222(h)2

〉
(x)−

〈
D1212 (∂1h)2

〉
(x)

]
sin2

(
πx/L1

)
dx

λ2
L1∫
0

〈
µ(h)2

〉
(x) sin2

(
πx/L1

)
dx

.

(7.8)
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Transversal free micro-vibrations

Free transversal micro-vibrations of the shell under consideration are described by
Eq. (5.36). For A = N = 1, this equation has the following form

〈
B2222(g)2

〉
(x)∂2222V +

[
2
〈
B1122g∂11g

〉
(x)− 4

〈
B1212 (∂1g)2

〉
(x)

]
∂22V+

+
〈
B1111 (∂11g)2

〉
(x)V +

〈
µ (g)2

〉
(x)V̈ = 0,

(7.9)

where averages occurring in the above equations are given in Appendix, cf. (A.13),
(A.16)-(A.18) and (A.21). The underlined terms in (7.9) depend on a cell size λ.

Solution to Eq. (7.9) satisfying the boundary conditions for a shell simply
supported on edges ξ = 0, ξ = L2 can be assumed in the form

V (x, ξ, t) = V ∗ (x) sin
(
πξ/L2

)
cos (ωt) , (7.10)

where V ∗(x) is a slowly-varying function in x satisfying boundary conditions on
edges x = 0, x = L1 and ω is a frequency of free transversal micro-vibrations.
Substituting (7.10) into (7.9), for sin(πξ/L2) 6= 0, we arrive at equation for V ∗(x)

V ∗ (x)

[ (
π/L2

)4 〈
B2222(g)2

〉
(x)− 2

(
π/L2

)2
(〈
B1122g∂11g

〉
(x)+

−2
〈
B1212 (∂1g)2

〉
(x)

)
+
〈
B1111 (∂11g)2

〉
(x)− ω2

〈
µ (g)2

〉
(x)

]
= 0,

(7.11)

Solution to Eq. (7.11) satisfying the boundary conditions for a shell simply
supported on edges x = 0, x = L1 is assumed as V ∗(x) = C sin(πx/L1). We
substitute this solution into (7.11). By means of Galerkin method, for C 6= 0
the orthogonality condition of the resulting left-hand side of Eq. (7.11) and
function sin(πx/L1) is obtained. Setting >g(·) = λ−1g(·), g(·) = λ−2g(·), from this
orthogonality condition, we derive the following formula for ω

ω2 =

λ4

L1∫
0

〈
µ (g)2

〉
(x) sin2

(
πx/L1

)
dx


−1

L1∫
0

[(
π/L2

)4
λ4
〈
B2222(g)2

〉
(x)+

− 2
(
π/L2

)2
λ2

(〈
B1122g∂11g

〉
(x)− 2

〈
B1212 (∂1

>g)2
〉

(x)

)
+

+
〈
B1111 (∂11g)2

〉
(x)

]
sin2

(
πx/L1

)
dx.

(7.12)
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7.2.2 Numerical calculations

All calculations are made using Maple by Maplesoft software and all charts are
made in gnuplot.

For the shell under consideration, calculations are made for approximations
η̃(x) of material properties distribution functions η(x) given by (6.6), (6.7), (6.10),
(6.16), i.e. for η̃(x) = x/L, η̃(x) = (x/L)2, η̃(x) = sin(πx/L), η̃(x) = η = 0.5. We
recall that L ≡ L1

Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
material properties described by functions applied in the problem analysed here
are shown in Fig. 7.1.

Figure 7.1: Distribution of materials described by a) η̃(x) = x/L b) η̃(x) = (x/L)2

c) η̃(x) = sin(πx/L) d) η̃(x) = η = 0.5, we recall that L ≡ L1

In the subsequent analysis, denotation L ≡ L1 will be used.
We define the following dimensionless free micro-vibration frequencies(

Ω
)2

≡
(
1− ν2

)
ρ1L

2

E1

(ω)2 , (7.13)

(
Ω̆
)2

≡
(
1− ν2

)
ρ1L

2

E1

(ω̆)2 , (7.14)

(Ω)2 ≡
(
1− ν2

)
ρ1L

2

E1

(ω)2 , (7.15)
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where frequencies ω, ω̆, ω are determined by formulae (7.4), (7.8) and (7.12),
respectively.

Some numerical results calculated by formulae (7.13)-(7.15) are shown in Figs.
7.2-7.8.

Calculations are made for Poisson’s ratio ν = 0.3, for fixed ratios
L2/L = 2, d/λ = 0.1 and for various ratios λ/L ∈ [0.01, 0.1], E2/E1 ∈ [0.2, 1.0],
ρ2/ρ1 ∈ [0.2, 1.0].

From expressions (7.13)-(7.15) it follows that all plots are made under
assumption L ≡ L1 = const, E1 = const, ρ1 = const.

In Figs. 7.2-7.4 there are presented diagrams of dimensionless free
micro-vibration frequencies Ω, Ω̆, Ω given by (7.13)-(7.15), respectively, versus
both ratios E2/E1 and ρ2/ρ1, made for λ/L = 0.01, d/λ = 0.1 and for distribution
functions of material properties η̃(x) = x/L, η̃(x) = (x/L)2, η̃(x) = sin(πx/L),
η̃(x) = η = 0.5. Note that diagram for distribution function η̃(x) = x/L
is not visible because it is very similar to diagram for distribution function
η̃(x) = η = 0.5.

Figure 7.2: Diagrams of dimensionless free micro-vibration frequency Ω (7.13) versus ratios E2/E1

and ρ2/ρ1, made for distribution functions η̃(x) given by (6.7), (6.8), (6.10), (6.16) and for
λ/L = 0.01
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Figure 7.3: Diagrams of dimensionless free micro-vibration frequency Ω̆ (7.14) versus ratios E2/E1

and ρ2/ρ1, made for distribution functions η̃(x) given by (6.7), (6.8), (6.10), (6.16) and for
λ/L = 0.01

Figure 7.4: Diagrams of dimensionless free micro-vibration frequency Ω (7.15) versus ratios E2/E1

and ρ2/ρ1, made for distribution functions η̃(x) given by (6.7), (6.8), (6.10), (6.16) and for
λ/L = 0.01
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In Figs. 7.5-7.7 there are shown plots of dimensionless free micro-vibration
frequencies Ω, Ω̆, Ω given by (7.13)-(7.15), respectively, versus dimensionless
microstructure length parameter λ/L, made for E2/E1 = 0.5, ρ2/ρ1 = 0.5,
d/λ = 0.1 and for distribution functions of material properties η̃(x) given by
η̃(x) = x/L, η̃(x) = (x/L)2, η̃(x) = sin(πx/L), η̃(x) = η = 0.5. Note that diagram
for distribution function η̃(x) = x/L is not visible because it is very similar to
diagram for distribution function η̃(x) = η = 0.5.

Figure 7.5: Diagrams of dimensionless free micro-vibration frequency Ω (7.13) versus
dimensionless microstructure length parameter λ/L, made for distribution functions η̃(x) given
by (6.7), (6.8), (6.10), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75
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Figure 7.6: Diagrams of dimensionless free micro-vibration frequency Ω̆ (7.14) versus
dimensionless microstructure length parameter λ/L, made for distribution functions η̃(x) given
by (6.7), (6.8), (6.10), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75

Figure 7.7: Diagrams of dimensionless free micro-vibration frequency Ω (7.15) versus
dimensionless microstructure length parameter λ/L, made for distribution functions η̃(x) given
by (6.7), (6.8), (6.10), (6.16) and for E2/E1 = 0.25, ρ2/ρ1 = 0.75
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The cell-dependent higher free micro-vibration frequencies discussed here can
be also determined applying the tolerance model equations (5.6), (5.7). However,
equations (5.6), (5.7) are much more complicated than the microscopic tolerance
equations (5.34)-(5.36) of the combined model, which are independent of solutions
obtained in the framework of the asymptotic model derived in the first step of
combined modeling. Moreover, within the tolerance model governed by equations
(5.6), (5.7), these higher free vibration frequencies are always determined not
separately but together with the fundamental cell-independent lower free vibration
frequencies. In order to check this conformability, the transversal dimensionless
free micro-vibration frequency Ω (7.15) obtained on the basis of micro-dynamic
equation (5.36) of the combined model (for A = N = 1) will be compared with
corresponding frequency

>
Ω+ (6.57) derived in the framework of tolerance model

(5.6), (5.7).
We recall that calculations based on (6.57) were carried out for a simply

supported shell, for Poisson’s ratio ν = 0.3, L2/L1 = 2/π, d/λ = 12/(125π),
λ/L1 = 1/24 and for wave numbers α = 5π/L1, β = π/L2. In order to compare
(7.15) and (6.57), calculations based on (7.15) will be made for the same data.

In Fig. 7.8 there are shown diagrams of higher free vibration frequency Ω (7.15)
derived from the combined model versus both ratios E2/E1 and ρ2/ρ1, made for
distribution functions of material properties η̃(x) described by (6.14)-(6.16).

Figure 7.8: Diagrams of dimensionless free micro-vibration frequency Ω (7.15) versus ratios E2/E1

and ρ2/ρ1, made for distribution functions η̃(x) given by (6.14)-(6.16) and for λ/L = 1/24,
d/λ = 12/(125π)
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It can be observed that diagrams shown in Figs. 7.8 and 6.24 are nearly
identical. Maximum relative error between values of Ω (7.15) derived from the
combined model and values of

>
Ω+ (6.57) derived from the tolerance model for

distribution functions (6.14)-(6.16) are equal to 0.0178%, 0.0172%, 0.0176%,
respectively. In all cases,

>
Ω+ (6.57) derived from the tolerance model was bigger

than Ω (7.15) derived from the combined model.

7.2.3 Discussion of results and conclusions

On the basis of results shown in Figs. 7.2-7.8 the following conclusions can be
formulated:

• The values of dimensionless free micro-vibration frequencies Ω, Ω̆ and Ω given
by (7.13)-(7.15) for all distribution functions under consideration increase
with the increase of ratio E2/E1 ∈ [0.2, 1.0], i.e. with the decreasing of
differences between elastic properties of the shell component materials, cf.
Figs. 7.2-7.4. Because the value of Young’s module E1 for the stronger
material is fixed then these differences decrease if values of E2 tend to value
of E1.

• The values of dimensionless free micro-vibration frequencies Ω, Ω̆ and Ω given
by (7.13)-(7.15) for all distribution functions under consideration decrease
with the increase of ratio ρ2/ρ1 ∈ [0.2, 1.0], i.e. with the decreasing of
differences between inertial properties of the shell component materials,
cf. Figs. 7.2-7.4. Because the value of Young’s module ρ1 for the stronger
material is fixed then these differences decrease if values of ρ2 tend to value
of ρ1.

• For every distribution function under consideration, the free micro-vibration
frequency in circumferential direction is bigger than the free micro-vibration
frequency in axial direction, and free micro-vibration frequency in axial
direction is greater than the transversal free micro-vibration frequency, cf.
Figs. 7.2-7.4.

• The highest value of dimensionless free micro-vibration frequency Ω (7.13)
is obtained for distribution function η̃(x) = sin(πx/L) and for pair of ratios
(E2/E1 = 1.0, ρ2/ρ1 = 0.2), cf. Fig. 7.2.

• The lowest value of dimensionless free micro-vibration frequency Ω (7.13)
is obtained for distribution function η̃(x) = (x/L)2 and for pair of ratios
(E2/E1 = 0.2, ρ2/ρ1 = 1.0), cf. Fig. 7.2.
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• The highest value of dimensionless free micro-vibration frequency Ω̆ (7.14)
is obtained for distribution function η̃(x) = sin(πx/L) and for pair of ratios
(E2/E1 = 1.0, ρ2/ρ1 = 0.2), cf. Fig. 7.3.

• The lowest value of dimensionless free micro-vibration frequency Ω̆ (7.14)
is obtained for distribution function η̃(x) = (x/L)2 and for pair of ratios
(E2/E1 = 0.2, ρ2/ρ1 = 1.0), cf. Fig. 7.3.

• The highest value of dimensionless free micro-vibration frequency Ω (7.15)
is obtained for distribution function η̃(x) = (x/L)2 and for pair of ratios
(E2/E1 = 1.0, ρ2/ρ1 = 0.2), cf. Fig. 7.4.

• The lowest value of dimensionless free micro-vibration frequency Ω (7.15)
is obtained for distribution function η̃(x) = (x/L)2 and for pair of ratios
(E2/E1 = 0.2, ρ2/ρ1 = 1.0), cf. Fig. 7.4.

• For fixed values of E2/E1 and ρ2/ρ1, the values of dimensionless free
micro-vibration frequencies Ω, Ω̂ and Ω given by (7.13)-(7.15), respectively,
are exponentially decreasing with increasing value of λ/L1, cf. Figs. 7.5-7.7.

• Validation of the models is confirmed by the very good agreement (relative
error is smaller than 1.78·10−4) in the comparison of the higher free vibration
frequencies Ω+ (6.57) derived from the tolerance model and the higher free
vibration frequencies derived from the combined model Ω (7.15).

7.3. Space-boundary layer phenomena

In this subsection we shall investigate influence of a microstructure size on the
shape of displacement micro-fluctuations in the open cylindrical transversally
graded shell under consideration. The shell is described in detail in Subsection
6.1 and shown in Fig. 6.1. In this subsection, approximation h̃(x, z) of fluctuation
shape functions h(x) given by h̃(x, z) = λ sin(2πz/λ), z ∈ ∆(x), x ∈ Ω∆, will be
taken into account.

A special length-scale problem of harmonic micro-vibrations in axial direction
will be studied. The analysis will be based on Eq. (5.35). It will be shown that Eq.
(5.35) describes certain space-boundary layer phenomena strictly related to the
specific form of boundary conditions imposed on fluctuation amplitude Q2(x, ξ, t),
(x, ξ, t) ∈ Ω× Ξ× I.
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7.3.1 Analytical results

The problem of harmonic micro-vibrations in axial direction is studied on the basis
of Eq. (5.35). For a = n = 1 this equation reduces to Eq. (7.5). In order to make
the analysis more clear, below we recall this equation〈

D2222(h)2
〉
(x)∂22Q2 −

〈
D2112 (∂1h)2

〉
(x)Q2 −

〈
µ (h)2

〉
(x)Q̈2 = 0,

x ∈ Ω∆.
(7.16)

The underlined terms in (7.16) depend on microstructure length parameter λ.
Setting Q̆2(x, ξ, t) ≡ Q2(x, L2ξ, t), where ξ ≡ ξ/L2 ∈ [0, 1], (x, t) ∈ Ω × I,

we transform equation (7.16) to the following dimensionless form with respect to
dimensionless argument ξ

(L2)−2 〈D2222(h)2
〉
(x)∂22Q̆2 −

〈
D2112 (∂1h)2

〉
(x)Q̆2 −

〈
µ (h)2

〉
(x)

¨̆
Q2 = 0, (7.17)

In order to investigate the problem of harmonic micro-vibrations in axial
direction, we assume solution to Eq. (7.17) in the form

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos (ω̆t) (7.18)

with ω̆ as a vibration frequency.
Under denotations

k̆2 =
(L2)2

〈
D2112 (∂1h)2

〉
λ2
〈
D2222h

2
〉 ,

ω̆2
∗ =

〈
D2112 (∂1h)2

〉
λ2

〈
µ
(
h
)2
〉 (7.19)

where h = λ−1h, Eq. (7.17) yields

∂22Q̆
∗
(
x, ξ
)
− k̆2

[
1−

(
ω̆

ω̆∗

)2
]
Q̆∗
(
x, ξ
)

= 0, (7.20)

where ω̆∗ is referred to as the cell-depending free micro-vibration frequency. It can

be shown that for every x ∈ [0, L1], averages
〈
D2222h

2
〉
,
〈
D2112 (∂1h)2

〉
,
〈
µ
(
h
)2
〉

are greater than zero; hence k̆2 > 0 and ω̆2
∗ > 0.
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Eq. (7.20) has a dimensionless form with respect to argument ξ. Argument
x ∈ [0, L1] in (7.20) can be treated as a parameter and Q̆∗(x, ξ) is a slowly-varying
function in x. For every fixed x, Eq. (7.20) can be treated as ordinary differential
equation with respect to ξ having constant coefficients.

The boundary conditions are assumed in the form Q̆∗
(
x, ξ = 0

)
= Q̆0 (x),

Q̆∗
(
x, ξ = 1

)
= 0, where Q̆0 is the known function slowly-varying in x.

For an arbitrary but fixed x ∈ [0, L1], the solutions Q̆∗
(
x, ξ
)

to equation
(7.20) depend on relations between vibrations frequencies ω̆ and ω̆∗. It means that
micro-fluctuation amplitude Q̆2

(
x, ξ, t

)
given by (7.18) also depends on relations

between ω̆ and ω̆∗.
The following special cases of micro-vibrations can be taken into account

1. If ω̆ = 0 then
Q̆∗
(
x, ξ
)

= Q̆0 (x) exp
(
−k̆ ξ

)
(7.21)

and fluctuation amplitude Q̆2(x, ξ, t) is given by

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

= Q̆0 (x) exp
(
−k̆ ξ

)
; (7.22)

we deal with a stationary problem with strongly decaying
micro-fluctuactions .

2. If 0 < ω̆2 < ω̆2
∗ and setting k̆2

ω ≡ k̆2

[
1−

(
ω̆
ω̆∗

)2
]
then

Q̆∗
(
x, ξ
)

= Q̆0 (x)

[
exp

(
−k̆ω ξ

)(
1− exp(−2k̆ω)

)−1

+

+ exp(k̆ωξ)
(

1− exp(2k̆ω)
)−1
] (7.23)

and fluctuation amplitude Q̆2

(
x, ξ, t

)
has the form

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos(ω̆t) =

= Q̆0 (x)

[
exp

(
−k̆ωξ

)(
1− exp

(
−2k̆ω

))−1

+

+ exp
(
k̆ωξ
)(

1− exp
(

2k̆ω

))−1
]

cos (ω̆t) .

(7.24)
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In this case micro-vibrations decay exponentially. It can be observed
that if 0 < ω̆2 � ω̆2

∗ then we can take into account the following approximate
form of solution (7.24)

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos(ω̆t) =

= Q̆0 (x) exp
(
−k̆ωξ

)
cos (ω̆t) .

(7.25)

From (7.25) it follows thatmicro-vibrations are strongly decaying near
the boundary ξ = 0. It means that they can be treated as equal to zero
outside a certain narrow layer near boundary ξ = 0. Thus, equation (7.16)
being a starting point in the micro-dynamic problem under consideration
makes it possible to investigate the boundary-layer phenomena.

3. If ω̆2 = ω̆2
∗ then

Q̆∗
(
x, ξ
)

=Q̆0 (x)
(

1− ξ
)

(7.26)

and fluctuation amplitude Q̆2

(
x, ξ, t

)
is given by

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos (ω̆t) = Q̆0 (x)
(

1− ξ
)

cos (ω̆t); (7.27)

we deal with a linear decaying of micro-vibrations.

4. If ω̆2 > ω̆2
∗ and κ̆2 ≡ k̆2

[(
ω̆
ω̆∗

)2

− 1

]
6= (nπ)2 then

Q̆∗
(
x, ξ
)

=Q̆0(x) sin
(
κ̆(1− ξ)

) (
sin(κ̆)

)−1 (7.28)

and fluctuation amplitude Q̆2

(
x, ξ, t

)
has the form

Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos(ω̆t) =

= Q̆0 (x) sin

(
κ̆
(

1− ξ
))

sin (κ̆)−1 cos(ω̆t);
(7.29)

micro-vibrations are not decaying, they oscillate.

5. If ω̆2 > ω̆2
∗ and setting κ̆2 ≡ k̆2

[(
ω̆
ω̆∗

)2

− 1

]
= (nπ)2 then the solution to

equation (7.20) does not exist; we obtain resonance microvibrations
with resonance frequencies

ω̆2
n = ω̆2

∗

[
1 +

(nπ)2

κ̆2

]
, n = 1, 2 . . . (7.30)

126



It has to be emphasized that the above effect cannot be analysed in the
framework of asymptotic models commonly used for investigations of dynamic
problems for tolerance-periodic shells. It can be observed that within the
asymptotic models, equation (7.16) reduces to equation

〈
D2112 (∂1h)2

〉
Q2 = 0,

which has only trivial solution Q2 = 0.

7.3.2 Numerical calculations

Plots of solutions Q̆∗
(
x, ξ
)
to Eq. (7.20) given by (7.21), (7.23), (7.26), (7.28) are

presented in Figs. 7.10-7.14. We recall that Q̆∗
(
x, ξ
)
is a part of micro-fluctuation

amplitude Q̆2

(
x, ξ, t

)
, i.e. Q̆2

(
x, ξ, t

)
= Q̆∗

(
x, ξ
)

cos(ω̆t).
Calculations are made for Poisson ratio ν = 0.3, for fixed ratios L2/L1 = 2,

d/λ = 0.1 and for various ratios ε ≡ λ/L1 ∈ [0.01, 0.1], E2/E1 ∈ [0.2, 1]. It can be
observed that under assumption L2/L1 = 2, values of ratio ε ≡ λ/L1 imply values
of ratio λ/L2, i.e. λ/L2 = λ/(2L1) = 0.5ε.

All diagrams are made for approximations η̃(x) of material properties
distribution functions η(x) given by (6.6), (6.7), (6.10), (6.17), i.e. for η̃(x) = x/L,
η̃(x) = (x/L)2, η̃(x) = sin(πx/L), η̃(x) = η = 0.5. We recall that L ≡ L1.
Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
materials described by functions applied in this subsection are shown in Fig. 7.9.

Figure 7.9: Distribution of materials described by a) η̃(x) = x/L b) η̃(x) = (x/L)2

c) η̃(x) = sin(πx/L) d) η̃(x) = η = 0.5
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Plots for the exponentially decaying solutions
Q̆∗((ω̆/ω̆∗)

2 < 1 : (ω̆/ω̆∗)
2 = 0.00, (0.65)2, (0.80)2) versus dimensionless coordinate

ξ ≡ ξ/L2 ∈ [0, 0.1] and plots for exponentially and linearly decaying solutions
((ω̆/ω̆∗)

2 ≤ 1 : (ω̆/ω̆∗)
2 = 0.00, (0.65)2, (0.80)2, (0.90)2, (0.98)2, 1.00) versus

dimensionless coordinate ξ ≡ ξ/L2 ∈ [0, 1] are shown in Figs. 7.10, 7.11.
These diagrams are performed for ratios λ/L2 = 0.1, E2/E1 = 0.5, x/L1 = 0.25.

Figure 7.10: Diagrams of decaying solutions Q̆∗ versus dimensionless coordinate
ξ ≡ ξ/L2 ∈ [0, 0.1], made for distribution functions η̃(x) given by (6.7), (6.8), (6.10),
(6.16) and for λ/L2 = 0.1, E2/E1 = 0.5, x = 0.25L1
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Figure 7.11: Diagrams of decaying solutions Q̆∗ versus dimensionless coordinate ξ ≡ ξ/L2 ∈ [0, 1],
made for distribution functions η̃(x) given by (6.7), (6.8), (6.10), (6.16) and for λ/L2 = 0.1,
E2/E1 = 0.5, x = 0.25L1
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Plots for the oscillating solutions Q̆∗ ((ω̆/ω̆∗)
2 > 1 : (ω̆/ω̆∗)

2 = (1.1)2) versus
dimensionless coordinate ξ ≡ ξ/L2 ∈ [0, 1] are presented in Fig. 7.12. These
diagrams are performed for ratios λ/L2 = 0.1, E2/E1 = 0.5, x/L1 = 0.25.

Figure 7.12: Diagrams of oscillating solutions Q̆∗ versus dimensionless coordinate
ξ ≡ ξ/L2 ∈ [0, 1], made for distribution functions η̃(x) given by (6.7), (6.8), (6.10), (6.16) and for
λ/L2 = 0.1, E2/E1 = 0.5, x = 0.25L1

130



In Fig. 7.13 there are diagrams of solutions Q̆∗(x, ξ) versus ratio
E2/E1 ∈ [0.2, 1] made for λ/L2 = 0.1, x/L1 = 0.25, ξ = 0.05 and for
((ω̆/ω̆∗)

2 ≤ 1 : (ω̆/ω̆∗)
2 = 0.00, (0.65)2, (0.80)2, (0.90)2, (0.98)2, 1.00).

Figure 7.13: Diagrams of solutions Q̆∗ versus ratio E2/E1, made for distribution functions η̃(x)
given by (6.7), (6.8), (6.10), (6.16) and for λ/L2 = 0.1, x/L1 = 0.25, ξ/L2 = 0.05
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Plots of solutions Q̆∗(x, ξ) versus ratio λ/L2 ∈ [0.01, 0.1]
performed for E2/E1 = 0.5, x/L1 = 0.25, ξ = 0.05 and for
((ω̆/ω̆∗)

2 ≤ 1 : (ω̆/ω̆∗)
2 = 0.00, (0.65)2, (0.80)2, (0.90)2, (0.98)2, 1.00) are shown

in Fig. 7.14.

Figure 7.14: Diagrams of solutions Q̆∗ versus ratio λ/L2, made for distribution functions η̃(x)
given by (6.7), (6.8), (6.10), (6.16) and for E2/E1 = 0.5, x/L1 = 0.25, ξ/L2 = 0.05
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7.3.3 Discussion of results and conclusions

Analysing the obtained analytical and numerical results some remarks can be
formulated:

• The shape of harmonic micro-vibrations with vibration frequency ω̆
depends on relations between values of ω̆ and a certain new additional
higher-order free vibration frequency ω̆∗ depending on a cell size λ. The
micro-vibrations can decay exponentially and very strongly near
the boundary ξ = ξ/L2 = 0 and can be treated as equal to zero outside a
certain narrow layer near this boundary, cf. solutions (7.22), (7.24), (7.25)
and Figs. 7.10, 7.11. The problem with strongly decaying micro-vibrations
near the boundary ξ = ξ/L2 = 0 is referred to the space-boundary-layer
phenomena. They can decay linearly, cf. solutions (7.27) and
Fig. 7.11. Certain values of ω̆ cause a non-decayed form of
micro-vibrations (micro-vibrations oscillate), cf. solution (7.29)
and Fig. 7.12, for certain values of ω̆ we deal with resonance
micro-vibrations, cf (7.30).

• From results presented in Figs. 7.10, 7.11 it follows that the mildest decrease
in solutions Q̆∗ takes place for distribution function η̃(x) = 0.5, slightly
stronger decrease is observed for η̃(x) = x/L, the even stronger decrease
takes place for η̃(x) = sin(πx/L) and the strongest one is observed for
η̃(x) = (x/L)2.

• From results shown in Fig. 7.13 it follows that solutions Q̆∗ are almost
constant for distribution function η̃(x) = x/L, in contrast to distribution
function η̃(x) = 0.5, for which solutions Q̆∗ decrease with the increase of
E2/E1, and in contrast to distribution functions η̃(x) = sin(πx/L) and
η̃(x) = (x/L)2, for which solutions Q̆∗ increase with the increase of E2/E1.

• Analysing results presented in Fig. 7.14 we can observe that the solutions Q̆∗
increase with the increase of parameter λ/L2 for all distribution functions
and for all analysed values of ω̆/ω̆∗.

7.4. Wave propagation problem

In this subsection we shall analyse the long wave propagation problem for the
tolerance-periodic shell under consideration. The shell is described in detail in
Subsection 6.1 and shown in Fig. 6.1.

Let the considered shell be unbounded along the axial ξ-coordinate. We
deal with long waves if condition λ/L � 1 holds, where λ is the midsurface
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length parameter and L is the wavelength. The waves related to micro-fluctuation
amplitude Q2(x, ξ, t), (x, ξ, t) ∈ Ω×Ξ× I, are taken into account. Hence, equation
(5.35) describing the shell’s micro-dynamics in an axial direction will be applied.
For a = n = 1, this equation reduces to Eq. (7.16).

7.4.1 Analytical results

The problem of wave propagation in axial direction is studied on the basis of Eq.
(7.16). We look for solution to (7.16) in the form Q2 (x, ξ, t) = F (x, ξ − ct), where
c is the wave propagation velocity. Setting h = λ−1h, from (7.16) we obtain

(
c2 − c̃2

)
∂22F +

c2

λ2
F = 0, (7.31)

where, for an arbitrary but fixed x ∈ Ω, speeds c̃ and c are defined by

c̃2 =

〈
D2222h

2
〉

〈
µh

2
〉 , (7.32)

c2 =

〈
D2112 (∂1h)2

〉
〈
µh

2
〉 . (7.33)

It can be observed that argument x in (7.31) can be treated as a parameter
and F (x, ·), x ∈ Ω, is a slowly-varying function in x. Equation (7.31) implies the
following special cases of wave propagation in the tolerance-periodic shell under
consideration:

1. sinusoidal waves if c > c̃,

2. exponential waves if c < c̃,

3. degenerate case if c = c̃.

The above effect cannot be analysed in the framework of asymptotic models.
In order to determine the dispersion relation for the case 1, let us substitute to

(7.16) solution of the form Q2 (x, ξ, t) = Af (x) sin
(
k (ξ − ct)

)
, k = 2π/L, where

f (x) is the known slowly-varying function, L and k are the wavelength and the
wave number, respectively, A is an arbitrary constant. It is assumed that L� λ.
The nontrivial solution (A 6= 0) exists only if

f (x)
[
(kλ)2 c2 − (kλ)2 c̃2 − c2

]
= 0, (7.34)
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where under assumption that L� λ, the following condition holds
kλ = 2πλ/L� 1.

The above equation describes the effect of dispersion. It can be seen that for
kλ → 0 the dispersion effect disappears. From (7.34) it follows that for a fixed
x ∈ Ω such that f(x) 6= 0, the dispersive long waves related to micro-fluctuation
amplitude Q2 (x, ξ, t) can propagate across the unbounded tolerance-periodic shell
under consideration with propagation speed

c2 = c̃2 +
c2

(kλ)2 (7.35)

depending on microstructure size λ.

7.4.2 Numerical calculations

All calculations are made using Maple by Maplesoft software and all charts are
made in gnuplot.

For the shell under consideration, calculations are made for approximations
η̃(x) of distribution functions of material properties η(x) given by (6.6),
(6.7), (6.11), (6.16), i.e. for η̃(x) = x/L, η̃(x) = (x/L)2, η̃(x) = cos(πx/(2L)),
η̃(x) = η = 0.5. We recall L ≡ L1.

Diagrams of these functions are shown in Fig. 6.3. Additionally, distribution of
material properties described by functions applied in the problem analyzed here
are shown in Fig. 7.15.

Figure 7.15: Distribution of materials described by a) η̃(x) = x/L b) η̃(x) = (x/L)2

c) η̃(x) = cos(πx/(2L)) d) η̃(x) = η = 0.5
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We define the following dimensionless wave propagation velocity

C2 =

(
1− ν2

)
ρ1

E1

c2 (7.36)

where speed c is determined by formulae (7.35).

Calculations are made for fixed ratio x/L1 = 0.5, for dimensionless wave
number kλ = 2πλ/L ∈ [0.01, 0.1] and for E2/E1 ∈ [0.2, 1.0], ρ2/ρ1 ∈ [0.2, 1.0].

From expressions (7.36) it follows that all plots are made under assumption
ν = const, E1 = const, ρ1 = const.

In Figs. 7.16-7.18 there are presented diagrams of dimensionless wave
propagation velocity C given by (7.36) versus ratio ρ2/ρ1, made for distribution
functions of material properties η̃(x) described by (6.6), (6.7), (6.11), (6.16) and
for E2/E1 = {0.25, 0.5, 0.75}, kλ = 0.02 π.

Figure 7.16: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio ρ2/ρ1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for E2/E1 = 0.25,
x/L1 = 0.5, kλ = 0.02 π
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Figure 7.17: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio ρ2/ρ1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for E2/E1 = 0.50,
x/L1 = 0.5, kλ = 0.02 π

Figure 7.18: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio ρ2/ρ1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for E2/E1 = 0.75,
x/L1 = 0.5, kλ = 0.02 π
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In Figs. 7.19-7.21 there are presented diagrams of dimensionless wave
propagation velocity C (7.36) versus ratio E2/E1, made for distribution functions
(6.6), (6.7), (6.11), (6.16) and for ρ2/ρ1 = {0.25, 0.5, 0.75}, kλ = 0.02 π.

Figure 7.19: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio E2/E1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for ρ2/ρ1 = 0.25,
x/L1 = 0.5, kλ = 0.02 π

Figure 7.20: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio E2/E1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for ρ2/ρ1 = 0.50,
x/L1 = 0.5, kλ = 0.02 π
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Figure 7.21: Diagrams of dimensionless wave propagation velocity C (7.36) versus ratio E2/E1,
made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and for ρ2/ρ1 = 0.75,
x/L1 = 0.5, kλ = 0.02 π
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In Fig. 7.22 there are presented diagrams of dimensionless wave propagation
velocity C given by (7.36) versus dimensionless wave number kλ, made for
distribution functions of material properties η̃(x) described by (6.6), (6.7), (6.11),
(6.16) and for ρ2/ρ1 = 0.25, E2/E1 = 0.25.

Figure 7.22: Diagrams of dimensionless wave propagation velocity C (7.36) versus dimensionless
wave number kλ, made for distribution functions η̃(x) given by (6.7), (6.8), (6.11), (6.16) and
for x/L1 = 0.5, ρ2/ρ1 = 0.25, E2/E1 = 0.25

7.4.3 Discussion of results and conclusions

It was shown that the tolerance-periodic heterogeneity of the shell under
consideration leads to exponential waves and to dispersion effects, which
cannot be analysed in the framework of the asymptotic models for
periodic or tolerance-periodic shells . Moreover, the new wave propagation
speed depending on the microstructure size has been obtained , cf. formula
(7.35).

On the basis of results shown in Figs. 7.16-7.22, the following conclusions can
be formulated:

• Values of dimensionless wave propagation velocity C (7.36) decrease with the
increasing of ratio ρ2/ρ1 ∈ [0.2, 1.0], i.e. with the decreasing of differences
between inertial properties of the component materials, cf. Figs. 7.16-7.18.
Because the value of mass density ρ1 for the stronger material is fixed then
these differences decrease if values of ρ2 tend to value of ρ1.
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• Values of dimensionless wave propagation velocity C (7.36) increase with the
increasing of ratio E2/E1 ∈ [0.2, 1.0], i.e. with the decreasing of differences
between elastic properties of the shell component materials, cf. Fig. 7.19-7.21.
Because the value of Young’s module E1 for the stronger material is fixed
then these differences decrease if values of E2 tend to value of E1.

• Values of dimensionless speed C (7.36) decrease with the increase of
dimensionless wave number kλ, i.e. with the decreasing of differences
between microstructure length parameter λ and the wavelength L, cf. Fig.
7.21. The strongest decrease in the dimensionless speed C takes place for
kλ ∈ [0.01, 0.03].

• The highest values of dimensionless speed C, cf. Figs. 7.16-7.21, are obtained
for pair of ratios (E2/E1 = 1.0, ρ2/ρ1 = 0.25), i.e. for a tolerance-periodic
shell with a very strong inertial heterogeneity and with elastic homogeneous
structure, and for distribution function η̃(x) = (x/L)2. The smallest values
of this speed is obtained for pair of ratios (E2/E1 = 0.25, ρ2/ρ1 = 1.0), i.e. for
a tolerance-periodic shell with a very strong elastic heterogeneity and with
inertial homogeneous structure, and for distribution function η̃(x) = (x/L)2.

• From results shown in Figs. 7.16-7.18 it follows that for values of ratio ρ2/ρ1

smaller than 0.8, Fig. 7.16, 0.87, Fig. 7.17, 0.94, Fig. 7.18, the values of
dimensionless wave propagation speed C (7.36) are greatest for distribution
function η̃(x) = (x/L)2, slightly smaller for η̃(x) = 0.5, even smaller for
η̃(x) = x/L and the smallest for η̃(x) = cos(πx/(2L)). On the other hand,
for values of ratio ρ2/ρ1 greater than 0.8, Fig. 7.16, 0.87, Fig. 7.17, 0.94,
Fig. 7.18, the order is reversed, i.e. the values of dimensionless velocity C
(7.36) are greatest for distribution function η̃(x) = cos(πx/(2L)), slightly
smaller for η̃(x) = x/L, even smaller for η̃(x) = 0.5 and the smallest for
η̃(x) = (x/L)2.

7.5. Special length-scale initial value problem

Object of considerations is a thin shell strip with span L ≡ L1 along the
circumferential x ≡ x1-coordinate and with a constant thickness. The shell strip
has a tolerance-periodic microstructure and a functionally graded macrostructure
along its span as well as a constant structure in the axial direction. It assumed that
the shell strip is made of two elastic isotropic materials, which are perfectly bonded
on interfaces and densely, tolerance-periodically distributed along x-coordinate. A
fragment of such a shell strip is shown in Fig. 6.1, where in the problem under
consideration length dimension L2 of the shell along ξ ≡ x2-coordinate is assumed
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to be infinite. The basic cell, properties of component materials and the shell
rigidities are described in detail in Subsection 6.1.

The influence of microstructure length parameter λ on the character of
displacement micro-fluctuations will be analysed in a certain special initial value
problem. This problem will be treated as independent of the ξ-coordinate.

The analysis will be based on Eq. (5.34). For a = n = 1 and under assumption
that the problem is independent of argument ξ ∈ Ξ, equation (5.34) reduces to the
following form

〈
D1111 (∂1h)2

〉
(x)Q1(x, t)−

〈
µ(h)2

〉
(x)Q̈1(x, t) = 0, (x, t) ∈ Ω× I (7.37)

Argument x ∈ Ω in (7.37) can be treated as a parameter. For an arbitrary but
fixed x, Eq. (7.37) can be treated as ordinary differential equation with respect to
argument t having constant coefficients.

Introducing non-dimensional time coordinate τ = t/T , where T is a certain
time constant, defining function q ≡ q1(x, τ) = Q1(x, Tτ) and introducing
parameter χ2 ≡ (l/λ)2, where l is a certain length parameter given by

l2 ≡
〈
D1111 (∂1h)2

〉
T 2
〈
µ(h)2

〉−1

(7.38)

with h ≡ λ−1h (l is independent of a cell size λ) as well as denoting ∂τ ≡ ∂/∂τ ,
we shall transform equation (7.37) to the dimensionless form with respect to time
argument τ

∂ττq(x, τ) + χ2q(x, τ) = 0. (7.39)

For an arbitrary but fixed x ∈ Ω, coefficient χ2 in (7.39) is constant.
We shall assume the initial conditions in the form q(x, 0) = 1, ∂τq(x, 0) = 0.

Moreover the considerations will be restricted to the time interval τ ∈ [0, π/2].
For an arbitrary but fixed x ∈ Ω and under initial conditions given above as well
as for τ ∈ [0, π/2], the solutions to equation (7.39) are given in Fig. 7.23. These
solutions illustrate the influence of microstructure length parameter λ
on the character of micro-fluctuations in the circumferential direction.

142



Figure 7.23: Diagrams of solutions to equation (7.39) versus dimensionless time coordinate τ ,
made for different interrelations between length parameters l and λ; χ ≡ l/λ

On the basis of result shown in Fig. 7.23, the important conclusions are:

• if 0 < χ < 1, i.e. l < λ, then the displacement micro-fluctuations decrease
monotonically and very softly; they don’t take the zero-value in the time
interval under consideration,

• if χ = 1, i.e. l = λ, then the micro-fluctuations decay monotonically in the
time interval under consideration; for τ = π/2 they are equal to zero,

• if χ > 1, i.e. l > λ, then solutions to equation (7.38) decay monotonically
and strongly in a certain subinterval of the time interval under consideration,
and then the absolute values of these solutions increase monotonically in the
remaining part of this time interval.

At the end of this subsection, the influence of differences between elastic and
inertial properties of the component materials on the length parameter l will be
studied.

We introduce dimensionless length parameter

(Ld)
2 =

ρ1(1− ν2)

E1T 2
l2. (7.40)

where l2 is given by (7.38).
Calculations are made for Poisson ratio ν = 0.3, for fixed ratios d/L = 0.005,

x/L = 0.25, for various ratios E2/E1 ∈ [0.2, 1] and ρ2/ρ1 ∈ [0.2, 1] and for material

143



properties distribution functions given by (6.6), (6.7), (6.9) and (6.16), i.e. for
η̃(x) = x/L, η̃(x) = (x/L)2, η̃(x) = (x/L)3, η̃(x) = η = 0.5.

Diagrams of dimensionless length parameter Ld (7.40) versus both ratios E2/E1

and ρ2/ρ1 made for distribution functions η̃(x) given by (6.6), (6.7), (6.9) and (6.16)
are presented in Fig. 7.24.

Figure 7.24: Diagrams of dimensionless length parameter Ld (7.40) versus both ratios E2/E1 and
ρ2/ρ1, made for distribution functions η̃(x) given by (6.6), (6.7), (6.9), (6.16) and for d/L = 0.005,
x/L = 1/4

From results shown in Fig. 7.24 it follows that dimensionless length parameter
Ld (7.40) decreases with the increase of ratio ρ2/ρ1, i.e. with the decrease of
differences between inertial properties of the component materials, but it increases
with the increasing of ratio E2/E1, i.e. with the decreasing of differences between
elastic properties of the component materials.

The highest value of dimensionless length parameter Ld (7.40) is obtained
for pair of ratios (E2/E1 = 1, ρ2/ρ1 = 0.2), i.e. for a tolerance-periodic shell
with a very strong inertial heterogeneity and with elastic homogeneous structure,
and for distribution function η̃(x) = (x/L)3. The smallest value of this length
parameter is obtained for pair of ratios (E2/E1 = 0.2, ρ2/ρ1 = 1), i.e. for a
tolerance-periodic shell with a very strong elastic heterogeneity and with inertial
homogeneous structure, and also for distribution function η̃(x) = (x/L)3.

It must be emphasized that the initial value problem discussed above
cannot be described in the framework of the asymptotic models
commonly used for investigations of mechanical problems for periodic
or tolerance-periodic shells .
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8. Final remarks and conclusions

The objects of considerations are thin linearly elastic Kirchhoff-Love-type
open circular cylindrical shells having a functionally graded macrostructure
and a tolerance-periodic microstructure in circumferential direction. On the
microscopic level, the shells consist of a very large number of separated, small
elements regularly distributed along circumferential direction and perfectly bonded
to each other (or to the homogeneous matrix). These elements, called cells, are
treated as thin shells. It is assumed that the adjacent cells are nearly identical
(i.e. they have nearly the same geometrical, elastic and inertial properties), but
the distant elements can be very different. The length dimension of a
cell in circumferential direction, called the microstructure length parameter,
is assumed to be very large compared with the maximum shell thickness and
very small as compared to the midsurface curvature radius as well as the length
dimension of the shell midsurface in the direction of tolerant periodicity. Examples
of such shells are shown in Figs. 4.1 and 4.2. At the same time, the shells
have constant structure in axial direction. On the microscopic level, the
geometrical, elastic and inertial properties of these shells are determined by highly
oscillating, non-continuous and tolerance-periodic functions in circumferential
direction. On the other hand, on the macroscopic level, the averaged properties
of the shells are described by functions being continuous and slowly varying
along circumferential direction. It means that the tolerance-periodic shells under
consideration can be treated as made of functionally graded materials (FGM),
cf. Suresh and Mortensen [110], and called functionally graded shells.Moreover,
since macroscopic properties of the shells are graded in direction normal to
interfaces between constituents, this gradation is referred to as the transversal
gradation.

The subject-matter of this doctoral thesis is the analytical modelling of
dynamic problems for the shells under consideration and the study of the effect
of a cell size on the macroscopic and microscopic shell behaviour (the length-scale
effect).

Dynamic behaviour of such shells are described by Euler-Lagrange equations
(4.9) generated by Lagrange function (4.8). The explicit form of (4.9), given by
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(4.10), coincides with the known governing equations of Kirchhoff-Love theory for
thin elastic shells. For tolerance-periodic shells, coefficients of these equations are
highly oscillating, non-continuous and tolerance-periodic functions. That is why
the direct application of equations (4.10) to investigations of specific problems is
non-effective even using computational methods.

The first aim of this dissertation was to formulate and discuss three
new mathematical averaged models with continuously slowly-varying
coefficients constituting a proper tool for the analysis of selected
dynamic problems in the thin cylindrical shells with a tolerance-periodic
microstructure and a transversally graded macrostructure in the
circumferential direction. Moreover, two from these models take into
account the effect of a microstructure size on the dynamic shell
behaviour.

This aim has been realized by means of applying the tolerance,
consistent asymptotic and combined asymptotic-tolerance modelling
procedures, cf. [164 ] to the starting Euler-Lagrange equations (4.9 ),
which explicit form (4.10 ) coincides with the known governing equations
of Kirchhoff-Love theory for thin elastic shells.

The results can be summarized by the following remarks and
conclusions:

a) The new mathematical non-asymptotic tolerance model for the
analysis of selected dynamic problems in the functionally graded shells
under consideration has been formulated by applying the tolerance modelling
procedure discussed by Woźniak in a large number of contributions and
summarized in [164, 166, 168.]. The tolerance approach is based on the
notion of tolerance relations between points and real numbers related to
the accuracy of the performed measurements and calculations. Tolerance
relations are determined by tolerance parameters. Other fundamental
concepts of this modelling technique are those of slowly-varying
functions, tolerance-periodic functions, fluctuation shape functions
and averaging operation. Following monographs by Woźniak et al. (eds.)
[164] and Ostrowski [90], the definitions of these basic notions were outlined
in Chapter 3 of this dissertation. The fundamental assumption imposed
on the lagrangian under consideration in the framework of the tolerance
averaging approach is called the micro-macro decomposition. It states
that the displacement fields occurring in this lagrangian have to be the
tolerance-periodic functions in the direction of tolerant periodicity. Hence,
they can be decomposed into unknown averaged displacements being
slowly-varying functions and fluctuations represented by finite
series of products of the known highly oscillating continuous
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tolerance-periodic fluctuation shape functions and unknown
slowly-varying fluctuation amplitudes. The second fundamental
assumption is called the tolerance averaging approximation, cf. (3.6).
This assumption makes it possible to neglect terms of an order of tolerance
parameters. The tolerance modelling technique used for Euler-Lagrange
equations (4.9) is realized in two steps. The first step is based on
the tolerance averaging of lagrangian (4.8) under micro-macro
decomposition defined by (5.1). This averaging is realized by applying the
averaging operation (3.5) and the tolerance averaging approximation
(3.6). The resulting tolerance-averaged form of lagrangian (4.8) is given by
(5.3). In the second step, applying the principle of stationary action to
the tolerance-averaged action functional (5.4) determined by means
of averaged lagrangian (5.3), we arrive at Euler-Lagrange equations (5.5).
After combining (5.5) with (5.3), we obtain finally the explicit form of the
tolerance model equations for the transversally graded shells under
consideration. These equations are written in the form of constitutive
relations (5.6) and dynamic balance equations (5.7). Unknowns of this model
are macrodisplacements u0

α, w
0 and fluctuation amplitudes Ua

α,W
A,

a = 1, 2, . . . , n, A = 1, 2, . . . , N . These unknowns must be slowly-varying
functions in the tolerant periodicity direction, i.e. they have to satisfy
conditions (3.1) for the pertinent tolerance parameters. Contrary to starting
equations (4.10) with coefficients highly oscillating, non-continuous and
tolerance-periodic along x-coordinate parametrizing the shell midsurface
in circumferential direction, the obtained tolerance model equations
have coefficients which are continuous and slowly-varying in
the direction of tolerant periodicity. Moreover, some of these
coefficients depend on microstructure length parameter λ. It means
that the biggest advantage of the proposed tolerance model is that
it describes the effect of the cell size on the global shell behaviour.
Moreover, this effect can be analysed not only in dynamic but also
in stationary shell problems. It is worth mentioning that the tolerance
equations proposed in this dissertation are a certain generalization of those
derived and discussed in Tomczyk and Szczerba [146], which have been
formulated under extra assumption 1 + λ/r ≈ 1, where λ and r stand
respectively for the microstructure length parameter and the midsurface
curvature radius. It means, that in the model equations presented here, terms
of an order O

(
λ/r
)
are not neglected and hence they contain a bigger number

of terms depending on the microstructure size.

b) The new mathematical consistent asymptotic model for the analysis
of selected dynamic problems in the transversally graded shells under
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consideration have been formulated by applying the new consistent
asymptotic modelling procedure given in Woźniak et al. (eds.) [164].
The fundamental assumption imposed on the lagrangian under consideration
in the framework of this approach is called the consistent asymptotic
decomposition. It states that the displacement fields occurring in the
lagrangian have to be replaced by families of fields depending on parameter
ε ∈ (0, 1] and defined in an arbitrary cell. These families of displacements
are decomposed into averaged part described by unknown functions
being continuously bounded in the tolerant periodicity direction and
highly oscillating part depending on ε. This highly oscillating part is
represented by the known highly oscillating fluctuation shape functions
multiplied by unknown functions being continuously bounded in the
direction of tolerant periodicity. Asymptotic modelling procedure used
for Euler-Lagrange equations (4.9) is realized in two steps. The first
step is the consistent asymptotic averaging of lagrangian (4.9 )
under consistent asymptotic decomposition defined by (5.8 ). The
resulting asymptotically averaged form of lagrangian (4.9) is given by
(5.12). In the second step, applying the principle of stationary action to
the consistent asymptotic action functional (5.13) defined by means of
averaged lagrangian (5.12), we arrive at Euler-Lagrange equations (5.14).
After combining (5.14) with (5.12), we obtain finally the explicit form of
the consistent asymptotic model equations for the shells under
consideration given by (5.15). Similarly as in the tolerance model,
unknowns of the asymptotic one are called macrodisplacements and
fluctuation amplitudes. However, these unknowns are not assumed to
be slowly-varying functions satisfying conditions (3.1). They are assumed to
be continuous and bounded in Ω ≡ [0, L1] together with their appropriate
derivatives. Fluctuation amplitudes are governed by the system of linear
algebraic equations (5.15)3.4 and can be always eliminated from the system
of governing equations (5.15) by means of (5.16). Hence, the unknowns of
final asymptotic model equations (5.18) are only macrodisplacements.
The resulting equations have to be considered together with decomposition
(5.19). Coefficients in the asymptotic equations are continuously
slowly variable in x, but they are independent of the microstructure
cell size. Thus, contrary to the tolerance model, the consistent
asymptotic one is not able to describe the length-scale effect on
the overall shell dynamics. The great advantage of this model is
that the effective moduli (5.17 ) of the shell can be obtained without
specification of the periodic cell problems.
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c) The new mathematical combined asymptotic-tolerance model for
the analysis of selected dynamic problems in the functionally graded
shells under consideration has been formulated by applying the
combined modelling procedure given in Woźniak et al. (eds.) [164].
The combined modelling technique is realized in two steps. The first
step is based on the consistent asymptotic procedure (outlined
above), which leads from starting equations (4.10) to the Euler-Lagrange
equations (5.18) with continuous and slowly-varying coefficients being
independent of the microstructure cell size. Equations (5.18) without the
external forces are rewritten as (5.20). Equations (5.20) are referred to
as the macroscopic model equations. Assuming that in the framework
of the macroscopic model the solutions (5.21) to the problem under
consideration are known, we can pass to the second step. The second
step is based on the tolerance averaging of starting lagrangian
(4.8 ) under so-called superimposed decomposition defined by
(5.22 ). This extra micro-macro decomposition superimposed on the
known solutions obtained within the macroscopic model contains the
new known, tolerance-periodic, continuous and highly oscillating
fluctuation shape functions and new slowly-varying unknowns
termed fluctuation amplitudes. Then, applying the principle of
stationary action to the tolerance-averaged action functional (5.28) defined
by means of the tolerance-averaged lagrangian (5.27) we arrive at the
Euler-Lagrange equations (5.29) and their explicit form (5.30), (5.31)
with continuous and slowly-varying in x coefficients depending also
on the cell size. Hence, the model obtained in the second step is
referred to as the superimposed microscopic model. Summarizing
the results we conclude that the equations of combined model
for the tolerance-periodic shells under consideration consist of
macroscopic model equations (5.20 ) formulated by means of
the consistent asymptotic procedure and having continuous and
slowly changing coefficients independent of a microstructure length
and of superimposed microscopic model equations (5.30 ), (5.31 )
derived by applying the tolerance modelling technique and having
continuous and slowly-varying coefficients depending also on a cell
size. Both the models are combined together under assumption that
in the framework of the macroscopic model the solutions (5.21) to
the problem under consideration are known. It was shown that under
special condition imposed on the fluctuation shape functions, the combined
model makes it possible to separate the macroscopic description
of some special problems from their microscopic description ; see
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equations (5.34)-(5.36). Thus, an important advantage of this model
is that it allows us to study micro-dynamics of the shells under
consideration independently of their macro-dynamics. Moreover,
micro-dynamic equations (5.34)-(5.36) describe certain time-boundary-layer
and space-boundary-layer phenomena strictly related to the specific form of
initial and boundary conditions imposed on the unknown micro-fluctuation
amplitudes.

d) The governing equations of all models derived in this dissertation are
uniquely determined by the continuous, highly oscillating, tolerance-periodic
fluctuations shape functions describing oscillations inside a cell. These
functions are assumed to be known in every problem under consideration.
They can be obtained as exact or approximate solutions to certain periodic
eigenvalue problems describing free periodic vibrations of the cell. It means
that they represent either the principal modes of free periodic vibrations
of the cell or physically reasonable approximation of these modes. These
functions can also be treated as the shape functions resulting from the
periodic discretization of the cell using for example the finite element method.
The choice of these functions can be also based on the experience or intuition
of the researcher.

e) The number and form of boundary conditions for unknown averaged variables
(i.e. macrodisplacements) of all models formulated here are the same as in
the classical shell theory governed by equations (4.10). Boundary conditions
for unknown fluctuation amplitudes should be defined only on boundaries
ξ = 0, ξ = L2.

f) Solutions to selected initial/boundary value problems formulated in the
framework of the tolerance model and the microscopic part of combined
model have a physical sense only if the physical reliability conditions hold
for the pertinent tolerance parameters. These conditions state that unknowns
of the aforementioned models have to be slowly-varying functions in direction
of tolerance-periodicity. Moreover, these conditions can be also used for the a
posteriori evaluation of tolerance parameters and hence, for the verification
of the physical reliability of the obtained solutions.

The second aim of this doctoral thesis was to apply the tolerance
and asymptotic models derived here to evaluation of the length-scale
effect in some special problems dealing with free vibrations of the
tolerance-periodic shells under consideration. The objects of considerations
were the simply supported shell strip of infinite axial length dimension and the
open simply supported shell of finite circumferential and axial length dimensions.
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The shells have constant thickness and are composed of two homogeneous,
elastic, isotropic materials densely and tolerance-periodically distributed along the
circumferential direction. The materials are perfectly bonded on interfaces. The
shell structure is constant in the axial direction, cf. Fig. 6.1. On the macroscopic
level the shells have transversally graded macrostructure in circumferential
direction.

Many functions describing the distribution of material properties have been
taken into account, cf. expressions (6.6)-(6.16) and Fig. 6.3.

The analysed free vibration problems were described by equations with
coefficients continuous and slowly-varying in x. It was difficult to find analytical
solutions to these equations. Thus, to obtain approximate formulas of free vibration
frequencies, the known Ritz variational method was applied.

Some analytical results derived in the framework of the tolerance and
asymptotic models were compared with numerical those obtained using the
commercial computer software Ansys based on the finite element methods.

The most important conclusions are:

a) Contrary to asymptotic model, the tolerance one describes the
effect of a cell size on the dynamic behaviour of the functionally
graded shells under consideration. In the framework of the
tolerance model, not only the fundamental lower, but also the new
additional higher-order free vibration frequencies can be derived
and analysed. The higher free vibration frequencies depend on
a cell size and hence cannot be determined applying asymptotic
models commonly used for investigations of the microstructured
shell dynamics. In the special dynamic problems discussed here, the
cell-dependent higher-order free vibration frequencies are expressed
by means of formulae (6.29) for a shell strip and (6.53) for the shell with
finite length dimensions.

b) From both the analytical and computational results it follows that the
differences between the fundamental lower free vibration frequencies derived
from the tolerance model and free vibration frequencies obtained from the
asymptotic one are negligibly small. Thus, the effect of the microstructure
size on the fundamental lower free vibration frequencies of the shells under
consideration can be neglected. Hence, the asymptotic model being more
simple than the tolerance non-asymptotic one is sufficient from the
point of view of calculations made for the dynamic problems under
consideration.

c) Values of the free vibration frequencies derived from the tolerance or
asymptotic models increase with decreasing differences between elastic
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properties of the shell component materials and decrease with decreasing
differences between inertial properties of the shell component materials.
Values of these frequencies increase linearly with decreasing of differences
between shell thickness and the microstructure length parameter λ. Values
of the cell-dependent higher free vibration frequencies decrease with the
decreasing of differences between a cell size λ and the length dimension
L ≡ L1 of the shell midsurface in the tolerant periodicity direction. For
every distribution function under consideration and for λ/L ∈ [0.01, 0.1],
these values decrease very strongly for λ/L ∈ [0.01, 0.03].

d) The comparison of the lower free vibration frequencies derived from the
tolerance or asymptotic models with those obtained using the commercial
computer software Ansys has given a very good agreement between these
results. Good agreement confirms the validation of the models proposed here.

The third aim was to apply the microscopic equations (5.34 )-(5.36 )
derived in the second step of the combined modelling to the analysis
of length-scale effect in some special problems dealing with the
shell micro-vibrations and with the long wave propagation related
to micro-fluctuations of the shell displacements. The open shell having
constant thickness and composed of two homogeneous, elastic, isotropic materials
densely and tolerance-periodically distributed along the circumferential direction
is object of considerations, cf. Fig. 6.1. The component materials are perfectly
bonded on interfaces. The shell structure is constant in an axial direction. On
the macroscopic level the shells have transversally graded macrostructure in
circumferential direction.

It was shown that the combined model for the tolerance-periodic
shells considered here, under special conditions imposed on the
fluctuation shape functions, makes it possible to analyse selected
problems of the shell micro-dynamics independently of the shell
macro-dynamics. This is the greatest advantage of the proposed
combined model. Note, that the problems mentioned above cannot be analysed
in the framework of the asymptotic models commonly used for investigations
of dynamics of periodic/tolerance-periodic cylindrical shells. Micro-dynamic
equations (5.34)-(5.36) obtained in the second step of the combined modelling
are independent of solutions obtained in the framework of the macroscopic (i.e.
asymptotic) model formulated in the first step of the combined modelling. We
recall that coefficients of micro-dynamic equations (5.34)-(5.36) are described by
continuous and slowly-varying functions with respect to argument x.

The results obtained on the basis of micro-dynamic equations
(5.34 )-(5.36 ) can be summarized by the following remarks and
conclusions:
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a) For the transversally graded shell under consideration simply supported on
all four edges, the cell-dependent free micro-vibration frequencies
(7.4), (7.8), (7.12) in circumferential, axial and normal directions,
respectively, have been derived on the basis of micro-dynamic equations
(5.34)-(5.36) and by applying the known approximate Galerkin method.
These frequencies were obtained independently of the cell-independent
free macro-vibration frequencies. The dependence of these frequencies
on the microstructure length parameter λ was studied. The influence of
differences between elastic and inertial properties of the component materials
on these frequencies was investigated in detail. Linear, parabolic, sinus
and constant (i.e. periodic) distributions of material properties were taken
into account. The highest values of the free micro-vibration frequencies in
circumferential and axial directions were obtained for the sinus distribution
and for a shell with elastic homogeneous structure and a very strong inertial
heterogeneity, while the lowest values were obtained for parabolic distribution
and for a shell having inertial homogeneous structure and a very strong elastic
inhomogeneity. The highest value of the transversal free micro-vibration
frequency was obtained for the parabolic distribution and for an elastically
homogeneous shell with a very strong inertial heterogeneity. The lowest value
of this frequency was also obtained for the parabolic distribution, but for
a shell with inertial homogeneity and a very strong elastic heterogeneity.
The free micro-vibration frequencies derived in the framework of the
combined model can be also obtained applying the tolerance one (5.6),
(5.7). However, tolerance model equations (5.6), (5.7) are much more
complicated that the microscopic equations (5.34)-(5.36) of the combined
model. Moreover, within the tolerance model the cell-dependent higher free
vibration frequencies are always determined not separately but together with
the fundamental cell-independent lower free vibration frequencies. In order to
check this conformability, the transversal free micro-vibration frequencies
(7.12) obtained on the basis of micro-dynamic equations (5.36) of the
combined model were compared with corresponding those (6.53) derived in
the framework of tolerance model (5.6), (5.7). Obviously, calculations based
on (6.53) were carried out for m = n = 1, i.e. for wave numbers α = π/L1,
β = π/L2. It has been shown that the results from the combined model are
in a very good agreement with those from the tolerance model.

b) The length-scale effect in a special problem for the open functionally graded
shell under consideration dealing with the axial harmonic micro-vibrations
with vibration frequency ω̆ was analysed on the basis of micro-dynamic
equation (5.35), which in the studied problem reduces to Eq. (7.16).
Special boundary conditions were imposed on fluctuation amplitude being
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unknown in this equation. Linear, parabolic, sinus and constant (i.e. periodic)
distributions of material properties were taken into account. It was shown
that the shape of these micro-vibrations depends on relations between
values of frequency ω̆ and a certain new additional higher-order free
vibration frequency ω̆∗ (7.19 )2 depending on a cell size λ. The
micro-vibrations can decay exponentially and very strongly near
the boundary ξ ≡ x2 = 0 and can be treated as equal to zero
outside a certain narrow layer near this boundary . The problem
with strongly decaying micro-vibrations near the boundary ξ = 0 is referred
to as the space-boundary layer phenomena. Thus, it was shown
that the microscopic equations of the combined model describe
the space-boundary layer phenomena. The micro-vibrations can
decay exponentially but not so strongly. They can decay linearly.
Certain values of ω̆ cause a non-decayed form of micro-vibrations
(micro-vibrations oscillate), for certain values of ω̆ we deal with
resonance micro-vibrations.

c) The problem of long wave propagation in the open functionally graded shell
under consideration but now unbounded in an axial direction was analysed
on the basis of equation (5.35) describing the shell micro-dynamics in an
axial direction. In the considered problem, this equation reduces to Eq.
(7.16). Linear, parabolic, cosine and constant (i.e. periodic) distributions
of material properties were taken into account. The long waves, related to
micro-fluctuation amplitude being unknown of equation (7.16) were studied.
Note, that we deal with long waves if condition λ/L � 1 holds, where λ
is the characteristic length dimension of a cell and L is the wavelength.
It was shown that the tolerance-periodically micro-heterogeneity of
the shell leads to exponential waves and to dispersion effects,
which cannot be analysed in the framework of the asymptotic
models for periodic/tolerance-periodic shells. Moreover, the new
wave propagation speed (7.35) depending on the microstructure
size has been obtained. The influence of the shell elastic and inertial
properties on this cell-dependent speed was analysed. From numerical
calculations, it follows that the values of the wave propagation velocity
increase with decreasing differences between elastic properties of the shell
component materials, but they decrease with decreasing of differences
between inertial properties of the component materials. Values of the wave
propagation speed decrease with the decreasing of differences between a cell
size λ and the wavelength L.

d) The influence of a microstructure size on the character of displacement
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micro-fluctuations in the transversally graded shell under consideration
was also analysed in a certain special initial-value problem describing by
equation (7.16) (or its dimensionless form (7.17)). We recall that Eq.
(7.16) describes micro-dynamic behaviour of the shell in an axial direction.
The considerations were restricted to the time interval

[
0, π/2

]
. The

important conclusion is that the distribution of these micro-fluctuations
in the time interval under consideration depends on interrelations between
microstructure length parameter λ and a certain length parameter l
independent of a cell size and described by means of elastic and inertial
properties of the shell and by a certain time constant. It has been shown that
if l < λ, then the displacement micro-fluctuations decrease monotonically
and very softly; they don’t take the zero-value in the time interval under
consideration. For l = λ the micro-fluctuations decay monotonically in the
time interval under consideration; for τ = π/2 they are equal to zero. If
l > λ then micro-fluctuations decay monotonically and strongly in a certain
subinterval of the time interval under consideration, and then the absolute
values of these solutions increase monotonically in the remaining part of this
time interval.

We recall that some special engineering problems discussed in Chapters 7
and 8 are related to shells composed of two homogeneous, elastic, isotropic
materials densely and tolerance-periodically distributed along the circumferential
direction. It has to be emphasized that the results presented in the chapters
mentioned above can be easily extended on the case in which we deal with shells
composed of more than two homogeneous, elastic, isotropic materials densely
and tolerance-periodically distributed along x-coordinate. It is worth mentioning
that the averaged models proposed in the doctoral thesis can also be applied to
investigations of dynamic problems in cylindrical shells reinforced by stiffeners
tolerance-periodically and densely distributed in circumferential direction. On the
macroscopic level, these stiffened shells can be treated as shells with transversally
graded macrostructure.

The functionally graded shells being objects of considerations in this doctoral
dissertation are widely applied in civil engineering, most often as roof girders and
bridge girders. They are also widely used as elements of housings of reactors and
tanks. The transversally graded shells having small length dimensions are elements
of air-planes, ships and machines.

The most important original elements of the doctoral thesis are as
follows:

1. Derivation of three new mathematical averaged models for the analysis
of dynamic problems in thin linearly elastic Kirchhoff-Love-type open
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circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in the circumferential direction as well as
with a constant structure in an axial direction:

a) the tolerance non-asymptotic model governed by equations with
continuous and slowly-varying coefficients depending also on
a microstructure size, cf. (5.6), (5.7); it means this model makes it
possible to investigate the length-scale effect,

b) the consistent asymptotic model governed by equations with
continuous and slowly-varying coefficients but independent of
a cell size, cf. (5.18),

c) the combined asymptotic-tolerance model in which asymptotic and
tolerance models are conjugated with themselves under assumption that
solutions obtained in the framework of the asymptotic model are known,
cf. (5.18), (5.30), (5.31); coefficients of this model are continuous
and slowly varying; moreover, coefficients in microscopic
(tolerance) model (5.30), (5.31) which is imposed on the
macroscopic (asymptotic) one (5.18) depend on microstructure
size.

2. It has been shown that the tolerance model formulated here can be
successfully applied to investigations of the effect of a cell size on the
dynamic behaviour of the functionally graded cylindrical shells under
consideration. It makes it possible to determine and analyse the new
additional cell-dependent higher free vibration frequencies caused
by the tolerance-periodic structure of the shells.

3. It has been given evidence that the differences between the fundamental
lower free vibration frequencies derived from the tolerance model and free
vibration frequencies obtained from the asymptotic one are negligibly small.
Hence, from a calculation point of view, the asymptotic model being more
simple than the non-asymptotic one is sufficient for the determination and
analysis of the basic free vibration frequencies.

4. It has been shown that the microscopic tolerance equations derived in the
second step of combined modelling, under special conditions imposed on the
fluctuation shape functions, are independent of solutions obtained in the
first step of combined modelling, i.e. in the framework of asymptotic model.,
cf. (5.34)-(5.36). It means that microscopic equations (5.34)-(5.36)
make it possible to study the shell micro-dynamics independently
of the shell macro-dynamics. This is the greatest advantage of the
combined model proposed in this dissertation.
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a) Using these micro-dynamic equations, the new cell-dependent higher
free vibration frequencies have been determined and analysed
independently of the fundamental, classical cell-independent
lower free vibration frequencies.

b) Some new important results have been obtained analysing
the harmonic micro-vibrations with vibration frequency ω̆. It was
shown that the form of these micro-vibrations depends on relations
between values of vibration frequency ω̆ and a certain new additional
higher-order free vibration frequency ω̆∗ (7.19)2 depending on the cell size.
The micro-vibrations can decay exponentially. They can decay
linearly. For certain interrelations between ω̆ and ω̆∗ we deal
with a non-decayed form of micro-vibrations (micro-vibrations
oscillate) or with resonance micro-vibrations. Moreover, it was
shown that the micro-dynamic equations of the combined model
describe the space-boundary layer phenomena.

c) Some new important results have been obtained analysing the
long wave propagation problem related to micro-fluctuations
in axial direction. It was shown that the tolerance-periodic
micro-heterogeneity of the shells leads to exponential waves and to
dispersion effects. Moreover, the new wave propagation speed (7.35)
depending on the microstructure size has been obtained.

d) Some new important results have been obtained examining the
influence of a microstructure size on the character of displacement
micro-fluctuations in a certain initial-value problem with special initial
conditions. It has been given evidence that the distribution of these
micro-fluctuations in the time interval under consideration depends on
interrelations between microstructure length parameter λ and a certain
length parameter l independent of a cell size and described by means of
elastic and inertial properties of the shell and by a certain time constant.

The most important final comments are:

1. The assumed aims of this doctoral thesis have been realized.

2. Theses of the doctoral dissertation have been proven.

The results obtained in this dissertation have an essential influence
on the state of knowledge dealing with dynamic behaviour of thin-walled
tolerance-periodic cylindrical shells, which on the macro-level are
referred to as the transversally graded shells. The results also generate

157



new directions of further investigations. Thus, the results exert an
influence on the development of this field of knowledge.

The anticipated directions of further investigations can be related to:

• the modelling of dynamic and stability problems for the cylindrical shells
of a heterogeneous microstructure, which is periodic in the circumferential
direction and slowly varying along the axial direction (longitudinally
graded shells),

• the stationary and dynamic stability problems,

• the analysis of shells in the framework of theories which are more exact than
the Kirchhoff-Love shell theory,

• the geometrically non-linear shell problems,

• the modelling of dynamic thermoelasticity problems and others.
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Appendix: Calculations of coefficients in
averaged models equations

Averaged models equations discussed in Chapters 6 and 7 have coefficients shown
below.

Note, that in calculations of those coefficients, the dimensional forms of
functions h(·) ∈ O(λ), g(·) ∈ O(λ2), ∂1g(·) ∈ O(λ) are taken into account, cf.
(A.5), (A.7), (A.14)-(A.18), (A.20), (A.21). Some of the averages found in the
equations discussed in Chapters 6, 7 contain dimensionless forms of these functions,
i.e. h ≡ λ−1h, g ≡ λ−2g, >g ≡ λ−1g.〈
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Summary

Dynamics of thin functionally graded cylindrical shells -
tolerance modelling

The subject-matter of this doctoral thesis is the analytical modelling and
analysis of dynamic problems for thin linearly elastic Kirchhoff-Love-type open
circular cylindrical shells having a functionally graded macrostructure and a
tolerance-periodic microstructure in circumferential direction. It means that
on the microscopic level, the shells consist of a very large number of separated,
small elements regularly distributed along circumferential direction and perfectly
bonded to each other (or to the homogeneous matrix), cf. Figs. 4.1 and 4.2. These
elements, called cells, are treated as thin shells. It is assumed that the adjacent
cells are nearly identical ( i.e. they have nearly the same geometrical, elastic
and inertial properties), but the distant elements can be very different.
At the same time, the shells have constant structure in axial direction. On
the microscopic level, the geometrical, elastic and inertial properties of these
shells are determined by highly oscillating, non-continuous and tolerance-periodic
functions in circumferential direction. On the other hand, on the macroscopic
level, the averaged properties of the shells are described by functions being
continuous and slowly varying along the direction of tolerant periodicity.
It means that the tolerance-periodic shells under consideration can be treated
as made of functionally graded materials (FGM) and called functionally
graded shells. Moreover, since macroscopic (i.e. averaged) properties of the shells
are graded in direction normal to interfaces between constituents, this gradation
is referred to as the transversal gradation.

Dynamic behaviour of such shells are described by the known governing
equations (4.10) of Kirchhoff-Love theory for thin elastic shells. For
tolerance-periodic shells, coefficients of these equations are highly oscillating,
non-continuous and tolerance-periodic functions. That is why the direct application
of these equations to investigations of specific dynamic problems is non-effective
even using computational methods.

The first aim of the doctoral thesis has been to formulate and
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discuss three new mathematical averaged models with continuously
slowly-varying coefficients constituting a proper tool for the
analysis of selected dynamic problems in the thin cylindrical shells
with a tolerance-periodic microstructure and transversally graded
macrostructure in the circumferential direction. Moreover, two from
these models take into account the effect of a microstructure size on
the dynamic shell behaviour. In order to formulate these models, the
tolerance, consistent asymptotic and combined asymptotic-tolerance
modelling procedures, cf. [164 ], have been applied to the starting
Euler-Lagrange equations (4.9 ), which explicit form (4.10 ) coincides
with the governing equations of Kirchhoff-Love theory for thin elastic
shells.

The tolerance approach is based on the notion of tolerance relations
between points and real numbers related to the accuracy of the performed
measurements and calculations. Tolerance relations are determined by tolerance
parameters. Other fundamental concepts of this modelling technique are those
of slowly-varying functions, tolerance-periodic functions, fluctuation
shape functions and averaging operation. The tolerance modelling is based
on two assumptions. The first of them is called the tolerance averaging
approximation and makes it possible to neglect terms of an order of tolerance
parameters. The second one is termed the micro-macro decomposition. It
states that the displacement fields occurring in the starting lagrangian have
to be the tolerance-periodic functions in the direction of tolerant periodicity.
Hence, they can be decomposed into unknown averaged displacements
(macrodisplacements) being slowly-varying functions and fluctuations
represented by finite series of products of the known highly oscillating
continuous tolerance-periodic fluctuation shape functions and unknown
slowly-varying fluctuation amplitudes. The basic concepts and assumptions
of the tolerance modelling technique are outlined in Chapter 3 of this doctoral
thesis.

The tolerance modelling technique applied to starting Euler-Lagrange
equations (4.9) has been realized in two steps. The first step has been based
on the tolerance averaging of the starting lagrangian (4.8 ) by applying
micro-macro decomposition (5.1 ), averaging operation (3.5 ) as well
as the tolerance averaging approximation (3.6 ). The resulting averaged
form of lagrangian (4.8) is given by (5.3). In the second step, using the
principle of stationary action to the averaged action functional (5.4 )
defined by means of tolerance-averaged lagrangian (5.3 ), we have arrived
at Euler-Lagrange equations (5.5) and then at their explicit form given by
constitutive relations (5.6) and dynamic balance equations (5.7). Summarizing, the
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tolerance model for the analysis of dynamic problems for thin linearly
elastic Kirchhoff-Love-type cylindrical shells having a transversally
graded macrostructure and a tolerance-periodic microstructure in
circumferential direction is represented by constitutive relations (5.6 )
and dynamic balance equations (5.7 ) together with micro-macro
decomposition (5.1 ) and physical reliability conditions (5.2 ). The basic
unknowns are macrodisplacements and fluctuation amplitudes which must
be slowly-varying along x-coordinate parametrizing the shell midsurface in
circumferential direction. The resulting tolerance model equations have
coefficients which are continuous and slowly-varying in the direction
of tolerant periodicity. Moreover, some of these coefficients depend on
microstructure size. The length-scale effect can be analysed not only in
dynamic but also in stationary problems.

On passing from tolerance averaging to the consistent asymptotic averaging,
the concept of highly oscillating fluctuation shape functions is retained only.
The notions of tolerance-periodic functions and slowly-varying functions are not
introduced. The fundamental assumption imposed on the starting lagrangian
in the framework of this approach is called the consistent asymptotic
decomposition. It states that the displacement fields occurring in the lagrangian
have to be replaced by families of fields depending on parameter ε ∈ (0, 1]
and defined in an arbitrary cell. These families of displacements are decomposed
into averaged part described by unknown functions (macrodisplacements) being
continuously bounded in the tolerant periodicity direction and highly-oscillating
part depending on ε. This highly-oscillating part is represented by the known
highly oscillating fluctuation shape functions multiplied by unknown functions
(fluctuation amplitudes) being continuously bounded in the direction of tolerant
periodicity.

Asymptotic modelling procedure applied to Euler-Lagrange equations (4.9)
has been realized in two steps. The first step has been the consistent
asymptotic averaging of lagrangian (4.9 ) under consistent asymptotic
decomposition defined by (5.8 ). The resulting averaged form of lagrangian
(4.9) is given by (5.12). In the second step, applying the principle of stationary
action to the consistent asymptotic action functional (5.13) defined by means of
averaged lagrangian (5.12), we have arrived at Euler-Lagrange equations (5.14) and
then at their explicit form (5.15). Finally, after eliminating unknown fluctuation
amplitudes by means of (5.16), we have obtained asymptotic model equations
(5.18) expressed only inmacrodisplacements. The resulting equations have to be
considered together with decomposition (5.19). Coefficients in the asymptotic
equations are continuously slowly variable in x, but they are independent
of the microstructure cell size. Thus, contrary to the tolerance model, the

183



consistent asymptotic one is not able to describe the length-scale effect
on the overall shell dynamics.

The combined asymptotic-tolerance model for the analysis of selected
dynamic problems in the functionally graded shells under consideration has been
formulated by applying the combined modelling procedure given in Woźniak
et al. (eds.) [164]. This combined modelling includes the consistent asymptotic and
the tolerance non-asymptotic modelling techniques which are combined together
into a new procedure. The equations of combined model proposed here
consist of asymptotic (macroscopic) model equations (5.20 ) formulated
by means of the consistent asymptotic procedure and having continuous
and slowly changing coefficients independent of a microstructure length
and of superimposed tolerance (microscopic) model equations (5.30 ),
(5.31 ) derived by applying the tolerance modelling technique and having
continuous and slowly-varying coefficients depending also on a cell
size. Both the models are combined together under assumption that in
the framework of the asymptotic model the solutions to the problem
under consideration are known . It has been shown that under special
condition imposed on the fluctuation shape functions, the combined model
makes it possible to separate the macroscopic description of some special
problems from their microscopic description, cf. equations (5.34)-(5.36).
Thus, an important advantage of this model is that it allows us to study
micro-dynamics of the shells under consideration independently of their
macro-dynamics.

Solutions to selected initial/boundary value problems formulated in the
framework of the tolerance model and the microscopic part of combined model have
a physical sense only if unknowns of the aforementioned models are slowly-varying
functions in the direction of tolerant periodicity. Moreover, these conditions can
be also used for the a posterior i evaluation of tolerance parameters and hence, for
the verification of the physical reliability of the obtained solutions.

The second aim of this doctoral thesis has been to apply the
tolerance and asymptotic models derived here to evaluation of the
length-scale effect in some special problems dealing with free vibrations
of the tolerance-periodic shells under consideration. In order to find
analytical solutions to the governing equations of these models (equations with
continuous and slowly-varying coefficients), the known Ritz variational method
has been applied. It has been shown that in the framework of the tolerance
model, not only the fundamental cell-independent lower, but also the
new additional higher-order cell-dependent free vibration frequencies
can be derived and analysed. The higher free vibration frequencies
cannot be determined applying asymptotic models commonly used for

184



investigations of dynamics of the periodic or tolerance-periodic shells.
It has been shown that the differences between the fundamental lower free vibration
frequencies derived from the tolerance model and free vibration frequencies
obtained from the asymptotic one are negligibly small. Thus, the effect of the
microstructure size on the fundamental lower free vibration frequencies of the shells
under consideration can be neglected. Hence, the asymptotic model being more
simple than the tolerance non-asymptotic one is sufficient from the
point of view of calculations made for the vibration problems under
consideration.

The third aim of the dissertation has been to apply the microscopic
equations (5.34 )-(5.36 ) derived in the second step of the combined
asymptotic-tolerance modelling to the analysis of length-scale effect in
some special problems dealing with the shell micro-vibrations and with
the long wave propagation related to micro-fluctuations of the shell
displacements. These equations are independent of solutions obtained
in the framework of the consistent asymptotic model (i.e. model derived
in the first step of combined modelling) and make it possible to analyse
selected problems of the shell micro-dynamics independently of the
shell macro-dynamics. This is the greatest advantage of the proposed
combined model.Moreover, micro-dynamic equations (5.34)-(5.36) involve terms
with time and spatial derivatives of unknown micro-fluctuation amplitudes. Hence,
they describe certain time-boundary layer and space-boundary layer phenomena
strictly related to the specific form of initial and boundary conditions imposed on
unknown fluctuation amplitudes.

It has been evidenced that using these micro-dynamic equations, the new
cell-dependent higher free vibration frequencies can be determined and
analysed independently of the fundamental, classical cell-independent
lower free vibration frequencies. Since equations (5.34)-(5.36) contain
continuously slowly-varying coefficients, the known Galerkin method was used to
obtain approximate formulas of free micro-vibration frequencies.

Some new important results have been obtained analysing the
harmonic micro-vibrations with vibration frequency ω̆. It has been shown
that the form of these micro-vibrations depends on relations between values of
vibration frequency ω̆ and a certain new additional higher-order free vibration
frequency ω̆∗ (7.19)2 depending on the cell size. The micro-vibrations
can decay exponentially. They can decay linearly. For certain
interrelations between ω̆ and ω̆∗ we deal with a non-decayed form
of micro-vibrations (micro-vibrations oscillate) or with resonance
micro-vibrations. Moreover, it has been shown that the micro-dynamic
equations of the combined model describe the space-boundary layer
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phenomena.
Some new important results have been obtained analysing the

long wave propagation problem related to micro-fluctuations in axial
direction. It was shown that the tolerance-periodic micro-heterogeneity of the
shells leads to exponential waves and to dispersion effects. Moreover, the new wave
propagation speed (7.35) depending on the microstructure size has been obtained.

All the above length-scale problems studied within the micro-dynamic
equations (5.34 )-(5.36 ) of the combined model cannot be analysed in the
framework of the asymptotic models commonly used for investigations
of dynamic behaviour of the cylindrical shells with a functionally graded
macrostructure and a tolerance-periodic microstructure.

The functionally graded shells being objects of considerations in this doctoral
thesis are widely applied in civil engineering, most often as roof girders and bridge
girders.

The results obtained in the dissertation generate new directions
of further investigations. The anticipated directions of investigations can
be related to: the modelling of stationary and dynamic stability problems in
the framework of linear Kirchhoff-Love second-order theory, the non-linear shell
dynamics and stability, the modelling of dynamic thermoelasticity problems and
others.
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Streszczenie

Dynamika cienkich powłok walcowych o funkcyjnej gradacji
własności - modelowanie tolerancyjne

Tematem rozprawy doktorskiej jest matematyczne modelowanie zagadnień
dynamiki cienkich, liniowo-sprężystych, mikro-niejednorodnych powłok walcowych
typu Kirchhoffa-Love’a. W kierunku obwodowym, powłoki te w skali
mikro mają tolerancyjnie periodyczną mikrostrukturę, natomiast w
skali makro charakteryzują się funkcyjną poprzeczną gradacją własności
uśrednionych (makrowłasności), por. rysunki 4.1, 4.2. Oznacza to, że na
poziomie mikro, rozpatrywane w rozprawie powłoki zbudowane są z dużej liczby
elementów (komórek) idealne ze sobą połączonych i regularnie rozmieszczonych
w kierunku obwodowym. Zakłada się, że sąsiadujące ze sobą komórki są
prawie identyczne, tzn. mają prawie identyczne własności geometryczne i
materiałowe, natomiast komórki oddalone od siebie mogą znacznie się różnić.
Zakłada się, że charakterystyczny wymiar liniowy komórki jest dostatecznie
duży w porównaniu z maksymalną grubością powłoki oraz dostatecznie
mały w porównaniu z minimalnym promieniem krzywizny oraz wymiarem
liniowym powierzchni środkowej wzdłuż współrzędnej x ≡ x1 parametryzującej
tę powierzchnię w kierunku obwodowym. Na poziomie mikroskopowym,
własności geometryczne, sprężyste oraz inercyjne takich powłok opisane są
silnie oscylującymi, nieciągłymi, tolerancyjnie periodycznymi funkcjami podług
argumentu x. Natomiast, na poziomie makroskopowym, uśrednione własności
rozpatrywanych powłok są opisane funkcjami ciągłymi i wolnozmiennymi w
kierunku tolerancyjnej periodyczności. Ponadto, uśrednione własności zmieniają
się w kierunku prostopadłym do granic między składnikami. Powłoki takie są
nazywane powłokami o funkcyjnej poprzecznej gradacji makrowłasności.

W kierunku osiowym, własności rozpatrywanych powłok są stałe.
Opis dynamicznych zachowań mikro-niejednorodnych powłok będących

przedmiotem rozprawy, w ramach znanej teorii Kirchhoffa-Love’a, prowadzi do
równań, których współczynniki są tolerancyjnie periodycznymi, silnie oscylującymi
i nieciągłymi funkcjami w kierunku obwodowym. Stąd, równania te nie mogą być
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wprost zastosowane do analizy zagadnień inżynierskich. Formułowane są zatem
różne przybliżone metody modelowania (tj. procedury uśredniające) prowadzące
od równań różniczkowych cząstkowych z silnie oscylującymi współczynnikami
do równań o współczynnikach ciągłych i wolnozmiennych (lub współczynnikach
stałych w przypadku walcowych powłok periodycznych).

Modele uśrednione powłok (płyt) periodycznych/tolerancyjnie periodycznych
są najczęściej otrzymywane na drodze homogenizacji asymptotycznej.
Jednakże, modele te pomijają wpływ wielkości komórki na globalne
(makroskopowe) zachowania powłoki, tzn. pomijają efekt skali.

Alternatywne, nieasymptotyczne podejście do matematycznego modelowania
ciał periodycznych lub tolerancyjnie periodycznych, oparte na pojęciu tolerancji
(pojęcie związane z dokładnością prowadzonych pomiarów lub obliczeń) i
prowadzące do uśrednionych równań o stałych lub ciągłych i wolnozmiennych
współczynnikach zależnych od wielkości komórki, zostało zaproponowane
i rozwijane przez profesora Czesława Woźniaka w wielu publikacjach i
podsumowane w monografiach [164, 166, 168]. Relacje tolerancyjne
determinowane parametrami tolerancji, funkcje wolno-zmienne,
funkcje tolerancyjno-periodyczne, fluktuacyjne funkcje kształtu oraz
operacja uśredniania są podstawowymi pojęciami techniki tolerancyjnego
modelowania. Technika ta oparta jest na dwóch założeniach. Pierwsze z tych
założeń, zwane przybliżeniem (uśrednieniem) tolerancyjnym, umożliwia
pomijanie wyrazów rzędu parametrów tolerancji. Drugie założenie zwane jest
mikro-makro dekompozycją pól przemieszczeń (lub pola temperatury w
zagadnieniach przepływu ciepła). Ograniczając się do zagadnień mechanicznych,
zgodnie z tym założeniem nieznane przemieszczenia w równaniach
wyjściowych są przedstawione w postaci sumy nieznanych uśrednionych
na komórce przemieszczeń, będących funkcjami wolnozmiennymi
(tzn. przyjmującymi w ramach tolerancji stałe wartości na komórce), oraz
silnie oscylujących fluktuacji. Fluktuacje są opisane przez znane w
każdym analizowanym zagadnieniu, liniowo-niezależne, periodyczne
lub tolerancyjnie periodyczne fluktuacyjne funkcje kształtu pomnożone
przez nieznane wolnozmienne funkcje, zwane amplitudami fluktuacji.

W niniejszej rozprawie wykorzystano technikę tolerancyjnego
modelowania w zagadnieniach dynamiki walcowych powłok
mikro-niejednorodnych o poprzecznej gradacji makrowłasności. Wykorzystano
także nowe podejście do asymptotycznego uśredniania równań różniczkowych
cząstkowych (lub funkcjonałów całkowych) o silnie oscylujących
periodycznych/tolerancyjnie periodycznych współczynnikach przedstawione
w książce [164] pod redakcją Cz. Woźniaka. Podejście to nazwano
asymptotycznym konsystentnym. Wykorzystano również zaproponowaną w

188



monografii [164] połączoną asymptotyczno-tolerancyjną technikę modelowania
ciał mikro-niejednorodnych. Stosując modelowanie tolerancyjne, asymptotyczne
konsystentne oraz asymptotyczno-tolerancyjne do wyjściowych równań
Eulera-Lagrange’a (4.9), których jawna postać pokrywa się ze znanymi równaniami
(4.10) teorii Kirchhoffa-Love’a cienkich powłok sprężystych, wyprowadzono trzy
nowe matematyczne uśrednione modele: tolerancyjny, asymptotyczny
konsystentny oraz asymptotyczno-tolerancyjny. W przeciwieństwie
do silnie oscylujących i nieciągłych współczynników równań wyjściowych,
współczynniki równań różniczkowych tych uśrednionych modeli są ciągłymi i
wolnozmiennymi funkcjami podług współrzędnej x parametryzującej powierzchnię
środkową powłoki w kierunku obwodowym. Ponadto, modele tolerancyjny i
asymptotyczno-tolerancyjny uwzględniają wpływ wielkości mikrostruktury na
dynamiczne zachowania powłoki. Wpływ ten zwany jest efektem skali.

Procedura tolerancyjnego modelowania zastosowana do wyjściowych równań
Eulera-Lagrange’a (4.9) realizowana była w dwóch etapach. Pierwszy etap polegał
na tolerancyjnym uśrednieniu funkcji Lagrange’a (4.8) z wykorzystaniem
mikro-makro dekompozycji (5.1), operacji uśredniania (3.5) oraz przybliżenia
tolerancyjnego (3.6). Tolerancyjnie uśredniona postać lagrangianu (4.8) dana jest
wzorem (5.3). W drugim etapie, stosując zasadę stacjonarności działania
do uśrednionego funkcjonału działania (5.4) zdefiniowanego poprzez
tolerancyjny uśredniony lagrangian (5.3), otrzymano uśrednione równania
Eulera-Lagrange’a (5.5), których jawna postać reprezentowana jest przez relacje
konstytutywne (5.6) oraz równania ruchu (5.7). Równania (5.6), (5.7) wraz z
mikro-makro dekompozycją (5.1) reprezentują model tolerancyjny do analizy
zagadnień dynamiki cienkich powłok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji makrowłasności w
kierunku obwodowym. Współczynniki równań modelu tolerancyjnego są ciągłe
i wolnozmienne. Ponadto, niektóre z tych współczynników zależą od wielkości
mikrostruktury. Efekt skali może być analizowany nie tylko w dynamicznych,
ale także w stacjonarnych zagadnieniach. Niewiadome równań modelu, tzn.
makroprzemieszczenia oraz amplitudy fluktuacji, muszą być funkcjami
wolnozmiennymi w kierunku tolerancyjnej periodyczności. Te wymagania
są wykorzystane do oceny a posteriori parametrów tolerancji, czyli także do
sprawdzenia fizycznej poprawności wyników otrzymanych w ramach modelu
tolerancyjnego.

Technika asymptotycznego konsystentnego uśredniania równań
różniczkowych cząstkowych (lub funkcjonałów całkowych) o silnie oscylujących
periodycznych/tolerancyjnie periodycznych współczynnikach, przedstawiona w
monografii [164], nie zawiera pojęć funkcji tolerancyjnie periodycznej i funkcji
wolnozmiennej. Wprowadzono tu tylko pojęcie fluktuacyjnej funkcji kształtu. W
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zagadnieniach mechanicznych, podstawowym kinematycznym założeniem tego
podejścia jest asymptotyczna dekompozycja pól przemieszczeń. Zgodnie z
tym założeniem, przemieszczenia występujące w wyjściowych równaniach (lub w
wyjściowym funkcjonale całkowym) zastąpione są rodzinami pól przemieszczeń
zdefiniowanymi na komórce i zależnymi od parametru ε ∈ (0, 1]. Rodziny te
rozłożone są na nieznane przemieszczenia, (zwane tak jak w podejściu
tolerancyjnym makroprzemieszczeniami), niezależne od parametru ε
oraz silnie oscylujące fluktuacje przemieszczeń zależne od ε. Te silnie
oscylujące fluktuacje są reprezentowane przez znane periodyczne/tolerancyjnie
periodyczne fluktuacyjne funkcje kształtu zależne od ε oraz przez nieznane
funkcje niezależne od ε, które, tak jak w podejściu tolerancyjnym, zwane
są amplitudami fluktuacji. Żąda się, aby występujące w asymptotycznej
dekompozycji funkcje niezależne od ε były ciągłe i ograniczone w kierunkach
periodyki lub tolerancyjnej periodyczności wraz z ich odpowiednimi pochodnymi.
Niezależność wyżej wymienionych funkcji od parametru ε stanowi zasadniczą
różnicę między podejściem asymptotycznym konsystentnym a podejściem
stosowanym w znanych teoriach homogenizacji asymptotycznej. Ponadto, modele
asymptotyczne konsystentne, w przeciwieństwie do powszechnie stosowanych
modeli asymptotycznych, nie wymagają rozwiązywania skomplikowanych
analitycznie brzegowych zagadnień na komórce w celu wyznaczenia efektywnych
sztywności ciała. W podejściu asymptotycznym konsystentnym, moduły efektywne
są rozwiązaniem układu równań algebraicznych liniowych dla nieznanych amplitud
fluktuacji.

Procedura modelowania asymptotycznego konsystentnego zastosowana do
wyjściowych równań Eulera-Lagrange’a (4.9) realizowana była w dwóch etapach.
Pierwszy etap polegał na asymptotycznym konsystentnym uśrednieniu
funkcji Lagrange’a (4.8) z wykorzystaniem asymptotycznej dekompozycji (5.8).
Uśredniona postać lagrangianu (4.9) dana jest wzorem (5.12). W drugim etapie,
stosując zasadę stacjonarności działania do uśrednionego funkcjonału
działania (5.13) zdefiniowanego poprzez asymptotycznie uśredniony
lagrangian (5.12), otrzymano uśrednione równania Eulera-Lagrange’a
(5.14) oraz ich jawną postać (5.15). Po wyeliminowaniu z układu równań
(5.15) amplitud fluktuacji, por. wzory (5.16), otrzymano równania modelu
asymptotycznego (5.18) wyrażone tylko w makroprzemieszczeniach. Równania
(5.18) wraz z dekompozycją (5.19) oraz równaniami dla amplitud fluktuacji (5.16)
reprezentują model asymptotyczny konsystentny do analizy zagadnień dynamiki
rozważanych w rozprawie cienkich powłok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji makrowłasności w
kierunku obwodowym. Współczynniki równań modelu asymptotycznego są ciągłe
i wolno zmieniające się. Współczynniki te nie zależą od parametru długości
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mikrostruktury.

Stosując procedurę asymptotyczno-tolerancyjną, por. książka [164],
wyprowadzono model asymptotyczno-tolerancyjny do badania zagadnień
dynamiki walcowych powłok o tolerancyjnie periodycznej mikrostrukturze i
poprzecznej gradacji makrowłasności w kierunku obwodowym. Równania tego
modelu reprezentowane są przez równania (5.20) modelu asymptotycznego
(makroskopowego), sformułowane z zastosowaniem techniki modelowania
asymptotycznego konsystentnego i mające ciągłe, wolno zmieniające się
współczynniki niezależne od wielkości mikrostruktury oraz równania
(5.30), (5.31) modelu tolerancyjnego (mikroskopowego), wyprowadzone
z zastosowaniem techniki tolerancyjnego modelowania i mające ciągłe,
wolnozmienne współczynniki zależne od wielkości komórki. Obydwa modele
połączone są ze sobą na podstawie założenia, że rozwiązania danego zagadnienia
brzegowo-początkowego w ramach modelu asymptotycznego są znane. W
rozprawie pokazano, że przy pewnych warunkach nałożonych na fluktuacyjne
funkcje kształtu, otrzymuje się równania (5.34)-(5.36) niezależne od rozwiązań w
ramach modelu asymptotycznego. Równania te opisują mikrodynamiczne
zachowania rozważanych w rozprawie powłok niezależnie od ich
makrodynamicznych zachowań. Jest to główna zaleta wyprowadzonego
modelu asymptotyczno-tolerancyjnego.

Sformułowane modele tolerancyjny i asymptotyczny zastosowano do oceny
efektu skali w pewnych szczególnych zagadnieniach dotyczących drgań własnych
rozważanych powłok. Ponieważ znalezienie analitycznych rozwiązań równań
modelu tolerancyjnego lub modelu asymptotycznego w ogólnym przypadku nie jest
możliwe, zastosowano przybliżony sposób rozwiązania. Przybliżone wzory częstości
drgań własnych otrzymano korzystając z metody Ritza. Analizując dynamikę
powłok w ramach modelu tolerancyjnego, otrzymano wzory analityczne
nie tylko na podstawowe tzw. niższe częstości drgań własnych, ale
również na nowe, dodatkowe tzw. wyższe częstości drgań własnych
zależne od parametru długości mikrostruktury. Wyższe częstości
umożliwiają analizę drgań wyższego rzędu oraz zjawiska dyspersji.
Te nowe wyższe częstości drgań nie mają swoich odpowiedników w
modelach asymptotycznych oraz w modelach numerycznych, opartych
na przykład na metodzie elementów skończonych. Wykazano, że wartości
niższych częstości drgań własnych obliczane według modelu tolerancyjnego są
pomijalnie większe od wartości odpowiednich częstości drgań otrzymanych w
ramach modelu asymptotycznego. Uwzględnienie efektu skali powoduje więc
jedynie nieznaczną, nie mającą praktycznego znaczenia korektę wartości częstości
drgań. Oznacza to, że efekt skali w zagadnieniach dotyczących drgań
własnych rozważanych powłok jest pomijalnie mały z obliczeniowego
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punktu widzenia. Zagadnienia te mogą być analizowane w ramach modeli
asymptotycznych (prostszych analitycznie od modeli z efektem skali).

Wyprowadzone z zastosowaniem procedury asymptotyczno-tolerancyjnej
równania (5.34)-(5.36), niezależne od rozwiązań w ramach modelu
asymptotycznego, wykorzystano do analizy zagadnień mikrodynamiki
rozważanych tolerancyjnie periodycznych powłok.

Analizowano mikrodrgania niezależnie od makrodrgań. Wyprowadzono
wzory na wyższe, dodatkowe, zależne od wielkości mikrostruktury
częstości mikrodrgań własnych w kierunkach obwodowym, osiowym oraz
normalnym do powierzchni środkowej. Wzory te otrzymano korzystając
z przybliżonej metody Galerkina. Przeprowadzono dokładną analizę tych
częstości.

Analizując harmoniczne mikrodrgania w kierunku osiowym z
częstością ω̆ (rozprzężone z mikrodrganiami w kierunkach obwodowym
i normalnym), uzyskano nowe wyniki w teorii mikrodrgań powłok
o funkcyjnej gradacji własności. Pokazano, że w zależności od relacji
między częstością drgań harmonicznych ω̆ a wyższą częstością mikrodrgań
własnych ω̆∗, zależną od wielkości komórki, występują różne postaci mikrodrgań.
Mikrodrgania zanikają wykładniczo lub liniowo. Dla pewnych relacji
między wartościami ω̆ i ω̆∗ mamy do czynienia z niezanikającą (tj.
oscylującą) postacią mikrodrgań lub z mikrodrganiami rezonansowymi.
Zbadano także tzw. efekt warstwy brzegowej, gdzie termin „brzeg”
odnosił się do przestrzeni.

Nowe wyniki uzyskano badając zagadnienia propagacji fal długich
w nieograniczonych w kierunku osiowym powłokach tolerancyjnie
periodycznych. Badane fale odnosiły się tylko do fluktuacyjnych części
przemieszczeń zależnych od efektu skali. Pokazano, że w zależności od
ograniczeń nałożonych na prędkość propagacji fal mogą propagować
się trzy typy fal : sinusoidalna lub wykładnicza lub występuje zdegenerowany
przypadek rozgraniczający fale sinusoidalne i wykładnicze. Wyprowadzono relacje
dyspersji. Wyprowadzono i zbadano nową prędkość propagacji fal zależną
od parametru długości mikrostruktury.

Nowe wyniki uzyskano analizując szczególny problem początkowy
opisany równaniem (5.35) dla amplitud mikro-fluktuacji w kierunku osiowym.
W badanym zagadnieniu równanie to redukuje się do równania różniczkowego
zwyczajnego drugiego rzędu z pochodnymi względem czasu. Problem ten
ilustruje wpływ wielkości komórki na charakter mikro-fluktuacji przemieszczeń w
kierunku osiowym, przy przyjętych warunkach początkowych. Pokazano, że w
zależności od relacji między pewnym parametrem długości l niezależnym
od wielkości komórki a parametrem długości mikrostruktury λ,
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mikro-fluktuacje przemieszczeń w kierunku osiowym mają różny
charakter w badanym przedziale czasu : dla l < λ maleją monotonicznie i
bardzo łagodnie i nie przyjmują wartości zero w badanym przedziale czasu, dla
l = λ mikro-fluktuacje maleją monotonicznie i na końcu badanego przedziału
czasu są równe zeru, dla l > λ mikro-fluktuacje zanikają monotonicznie i silnie w
pewnym podprzedziale badanego przedziału czasu, a następnie absolutne wartości
mikro-fluktuacji rosną monotonicznie w pozostałej części tego przedziału czasu.

Wszystkie przedstawione powyżej efekty, uzyskane w ramach równań
mikromechaniki (5.34)-(5.36) modelu asymptotyczno-tolerancyjnego nie mogą
być analizowane w ramach asymptotycznych modeli powłok, jak również
przy użyciu znanych programów komputerowych.

Wyprowadzone w niniejszej rozprawie modele mikro-niejednorodnych
powłok walcowych mogą być wykorzystane do badań dynamiki powłokowych
elementów konstrukcyjnych mostów i dachów, powłokowych elementów reaktorów,
powłokowych elementów samolotów, okrętów, maszyn.

Uzyskane wyniki mają istotny wpływ na stan wiedzy dotyczącej dynamicznych
zachowań cienkościennych powłok walcowych o tolerancyjnie periodycznej
mikrostrukturze oraz o funkcyjnej poprzecznej gradacji własności
uśrednionych (makrowłasności) w kierunku obwodowym, a także generują
nowe kierunki badań i tym samym wywierają wpływ na rozwój tej dziedziny
wiedzy.

Dalsze badania mikro-niejednorodnych powłok walcowych, będących obiektem
rozważań rozprawy doktorskiej, z wykorzystaniem techniki tolerancyjnego
modelowania mogą dotyczyć nieliniowych zagadnień dynamiki i stateczności,
problemów dynamicznej termosprężystości, formułowania modeli w ramach teorii
dokładniejszych niż teoria Kirchhoffa-Love’a.
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